Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech's System X supercomputer provides super tool for simulation of cell division

31.01.2007
Virginia Tech researchers in computer science and biology have used the university's supercomputer, System X, to create models and algorithms that make it possible to simulate the cell cycle -- the processes leading to cell division. They have demonstrated that the new mathematical models and numerical algorithms provide powerful tools for studying the complex processes going on inside living cells.

Biologist John Tyson, who studies the cell cycle, is a leader in applying mathematical models in molecular cell biology. However, comparing the results of a mathematical model to experimental data is difficult because mathematical results are quantitative (numbers) while much experimental data is qualitative (trends). The mathematical biologist must figure out how to set the numerical values of the ‘parameters’ in the model equations in order to create an accurate representation of what is going on inside the cell. A simple example is the conversion between Fahrenheit and Celsius temperatures, said mathematician Layne Watson. "You could use several pairs of Fahrenheit and Celsius readings for the same temperature, and try to deduce the formula for converting between the temperature scales."

Previously, Tyson worked with simpler models whose parameters could be determined by trial and error, a process modelers call "parameter twiddling." But he and his coworker, Kathy Chen, wanted to characterize all the protein interactions regulating the cell cycle of budding yeast (the yeast cells familiar to bakers and brewers, and a favorite organism of molecular biologists, as well). "Such fundamental research on the cell cycle of budding yeast provides a basis for understanding the reproduction of human cells and is relevant to the causes and treatment of cancer, to tissue regeneration, and to the control of many pathogens," Tyson said.

For the budding yeast cell cycle, the experimental data consists of observed traits of 130 mutant yeast strains constructed by disabling and/or over-expressing the genes that encode the proteins of the regulatory network. The model has 143 parameters that need to be estimated from the data. "That is a big problem," said Watson. "You can't do that by hand. You can't even do it on a laptop. It takes a supercomputer."

In fact, it required more than 20,000 CPU hours on System X, a 2200 processor parallel computer, using two new algorithms, DIRECT (DIviding RECTangles) and MADS (Mesh Adaptive Direct Search), to estimate the 143 parameters.

"With a tool like this scientists can spend more time working on the model and less time twiddling parameters," said Tyson.

The research is due to appear in 2007 in the Journal of Global Optimization, in the article "Deterministic Parallel Global Parameter Estimation for a Model of the Budding Yeast Cell Cycle," by Thomas D. Panning, Layne T. Watson, Nicholas A. Allen, Katherine C. Chen, Clifford A. Shaffer, and John J. Tyson.

Panning, who is from Tulsa, Okla., received his master of science in computer science in May 2006 and is currently working as a programmer in Germantown, Md. Watson, of Blacksburg, is professor of computer science in the College of Engineering and professor of mathematics in the College of Science. Allen, who is from Columbia, Md., received his Ph.D. in computer science in November 2005 and is now with Microsoft. Chen, of Blacksburg, is a research scientist biological sciences in the College of Science. Shaffer, of Newport, is associate professor of computer science. Tyson, of Blacksburg, is a University Distinguished Professor of biological sciences.

The Virginia Tech computer science team created massively parallel versions of a deterministic global search algorithm, DIRECT, and a deterministic local search algorithm, MADS, to do the twiddling, and then combined the results. "A deterministic global search algorithm systematically explores the parameter space, finding good values," Watson said. "Then the local search algorithm improves the values from the starting points found by the global algorithm."

The parallel computer programs can now be used by others for similar problems. "The parameters found for the budding yeast cell cycle model are good until the next scientist invalidates them with new experimental data. That could be years from now or next week. That's the way science works," says Watson.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: Supercomputer Watson algorithm cell cycle computer science mathematical

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>