Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech's System X supercomputer provides super tool for simulation of cell division

31.01.2007
Virginia Tech researchers in computer science and biology have used the university's supercomputer, System X, to create models and algorithms that make it possible to simulate the cell cycle -- the processes leading to cell division. They have demonstrated that the new mathematical models and numerical algorithms provide powerful tools for studying the complex processes going on inside living cells.

Biologist John Tyson, who studies the cell cycle, is a leader in applying mathematical models in molecular cell biology. However, comparing the results of a mathematical model to experimental data is difficult because mathematical results are quantitative (numbers) while much experimental data is qualitative (trends). The mathematical biologist must figure out how to set the numerical values of the ‘parameters’ in the model equations in order to create an accurate representation of what is going on inside the cell. A simple example is the conversion between Fahrenheit and Celsius temperatures, said mathematician Layne Watson. "You could use several pairs of Fahrenheit and Celsius readings for the same temperature, and try to deduce the formula for converting between the temperature scales."

Previously, Tyson worked with simpler models whose parameters could be determined by trial and error, a process modelers call "parameter twiddling." But he and his coworker, Kathy Chen, wanted to characterize all the protein interactions regulating the cell cycle of budding yeast (the yeast cells familiar to bakers and brewers, and a favorite organism of molecular biologists, as well). "Such fundamental research on the cell cycle of budding yeast provides a basis for understanding the reproduction of human cells and is relevant to the causes and treatment of cancer, to tissue regeneration, and to the control of many pathogens," Tyson said.

For the budding yeast cell cycle, the experimental data consists of observed traits of 130 mutant yeast strains constructed by disabling and/or over-expressing the genes that encode the proteins of the regulatory network. The model has 143 parameters that need to be estimated from the data. "That is a big problem," said Watson. "You can't do that by hand. You can't even do it on a laptop. It takes a supercomputer."

In fact, it required more than 20,000 CPU hours on System X, a 2200 processor parallel computer, using two new algorithms, DIRECT (DIviding RECTangles) and MADS (Mesh Adaptive Direct Search), to estimate the 143 parameters.

"With a tool like this scientists can spend more time working on the model and less time twiddling parameters," said Tyson.

The research is due to appear in 2007 in the Journal of Global Optimization, in the article "Deterministic Parallel Global Parameter Estimation for a Model of the Budding Yeast Cell Cycle," by Thomas D. Panning, Layne T. Watson, Nicholas A. Allen, Katherine C. Chen, Clifford A. Shaffer, and John J. Tyson.

Panning, who is from Tulsa, Okla., received his master of science in computer science in May 2006 and is currently working as a programmer in Germantown, Md. Watson, of Blacksburg, is professor of computer science in the College of Engineering and professor of mathematics in the College of Science. Allen, who is from Columbia, Md., received his Ph.D. in computer science in November 2005 and is now with Microsoft. Chen, of Blacksburg, is a research scientist biological sciences in the College of Science. Shaffer, of Newport, is associate professor of computer science. Tyson, of Blacksburg, is a University Distinguished Professor of biological sciences.

The Virginia Tech computer science team created massively parallel versions of a deterministic global search algorithm, DIRECT, and a deterministic local search algorithm, MADS, to do the twiddling, and then combined the results. "A deterministic global search algorithm systematically explores the parameter space, finding good values," Watson said. "Then the local search algorithm improves the values from the starting points found by the global algorithm."

The parallel computer programs can now be used by others for similar problems. "The parameters found for the budding yeast cell cycle model are good until the next scientist invalidates them with new experimental data. That could be years from now or next week. That's the way science works," says Watson.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: Supercomputer Watson algorithm cell cycle computer science mathematical

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>