Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailoring the Therapy to the Cancer

29.01.2007
A single receptor molecule can perform different functions in different cancer types, thereby complicating approaches to therapy. This was the key finding of a study recently published in the British Journal of Cancer (BJC)*.

The study compared the functionality of the HER2/neu receptor in the cancer cells of breast and ovarian cancer tissue. Supported by the Austrian Science Fund FWF, the team of scientists involved have shown that the cellular process regulated by this receptor vary greatly between different cancer types. As HER2/neu is the target of successful breast cancer therapy, this result is of major significance for the treatment of ovarian cancer.

Breast and ovarian cancers can both be hereditary, can both be traced back to the same genetic defect and consequently can both possess a large number of HER2/neu receptors. Why therefore do both cancer types not react in the same way when this receptor is blocked? An approach that has proved to be the biggest success of the past 20 years in the treatment of breast cancer has proved unsuccessful in therapies for ovarian cancer. Dr. Dietmar Pils, a member of the laboratory headed by Prof. Michael Krainer, an oncologist at the Department of Internal Medicine I, Medical University of Vienna, has achieved a major breakthrough in finding an answer to this puzzling question.

One Receptor. Two Effects.

The team compared tissue samples from 148 ovarian cancers with results from breast cancer tissue samples and the available patient data. This comparison uncovered interesting differences between the two tissue types. While around 25% of ovarian cancer samples also exhibited a high occurrence of the HER2/neu receptor (a known fact), a different signal molecule (CXCR4) was unaffected in the ovarian cancer tissue. However, breast cancer cells, which exhibit elevated levels of HER2/neu, also produce greater amounts of CXCR4 than healthy cells. The CXCR4 molecule has been linked to the formation of metastases and it is assumed that HER2/neu induces the formation of CXCR4 while simultaneously protecting the molecule against degradation caused by enzymes, thus enabling the cancer to become more aggressive (i.e. metastasising). The results from the Medical University of Vienna now show that the signalling effect produced by HER/2neu is not involved in ovarian cancer.

Molecular Diagnostics Optimise Therapy

Prof. Krainer on the significance of these results: "For almost ten years we have been able to identify hereditary breast cancer using molecular diagnostics and rely on monoclonal antibodies for therapy. The first antibody to be approved for use as a medicine blocks precisely the HER2/neu receptor, thus impeding the cancer’s growth. This is a perfect example of a tailor-made approach to therapy. Our work now reveals just how important it is to carry this differentiation further forward in the development of cancer therapies. After all, in the case of ovarian cancer cells, although the same monoclonal antibody fits this receptor, it has little effect. My laboratory is using findings such as these to create a basis for optimizing the treatment of cancer and to discover where therapies are going wrong. We are very grateful for the support we have received from the FWF, particularly since the potential – including the financial potential – that fundamental research offers for the health system seems not to have been fully recognized yet."

This study, supported by the FWF Austrian Science Fund, clearly demonstrates just how important results from fundamental research can be for state-of-the-art cancer therapy. Furthermore, studies such as this also enable health professionals to choose the optimum treatment for each individual patient from a vast range of therapies. After all, there is no one-size-fits-all treatment for cancer.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200701-2en.html

Further reports about: CXCR4 HER2/neu breast cancer ovarian receptor therapies

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>