Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailoring the Therapy to the Cancer

29.01.2007
A single receptor molecule can perform different functions in different cancer types, thereby complicating approaches to therapy. This was the key finding of a study recently published in the British Journal of Cancer (BJC)*.

The study compared the functionality of the HER2/neu receptor in the cancer cells of breast and ovarian cancer tissue. Supported by the Austrian Science Fund FWF, the team of scientists involved have shown that the cellular process regulated by this receptor vary greatly between different cancer types. As HER2/neu is the target of successful breast cancer therapy, this result is of major significance for the treatment of ovarian cancer.

Breast and ovarian cancers can both be hereditary, can both be traced back to the same genetic defect and consequently can both possess a large number of HER2/neu receptors. Why therefore do both cancer types not react in the same way when this receptor is blocked? An approach that has proved to be the biggest success of the past 20 years in the treatment of breast cancer has proved unsuccessful in therapies for ovarian cancer. Dr. Dietmar Pils, a member of the laboratory headed by Prof. Michael Krainer, an oncologist at the Department of Internal Medicine I, Medical University of Vienna, has achieved a major breakthrough in finding an answer to this puzzling question.

One Receptor. Two Effects.

The team compared tissue samples from 148 ovarian cancers with results from breast cancer tissue samples and the available patient data. This comparison uncovered interesting differences between the two tissue types. While around 25% of ovarian cancer samples also exhibited a high occurrence of the HER2/neu receptor (a known fact), a different signal molecule (CXCR4) was unaffected in the ovarian cancer tissue. However, breast cancer cells, which exhibit elevated levels of HER2/neu, also produce greater amounts of CXCR4 than healthy cells. The CXCR4 molecule has been linked to the formation of metastases and it is assumed that HER2/neu induces the formation of CXCR4 while simultaneously protecting the molecule against degradation caused by enzymes, thus enabling the cancer to become more aggressive (i.e. metastasising). The results from the Medical University of Vienna now show that the signalling effect produced by HER/2neu is not involved in ovarian cancer.

Molecular Diagnostics Optimise Therapy

Prof. Krainer on the significance of these results: "For almost ten years we have been able to identify hereditary breast cancer using molecular diagnostics and rely on monoclonal antibodies for therapy. The first antibody to be approved for use as a medicine blocks precisely the HER2/neu receptor, thus impeding the cancer’s growth. This is a perfect example of a tailor-made approach to therapy. Our work now reveals just how important it is to carry this differentiation further forward in the development of cancer therapies. After all, in the case of ovarian cancer cells, although the same monoclonal antibody fits this receptor, it has little effect. My laboratory is using findings such as these to create a basis for optimizing the treatment of cancer and to discover where therapies are going wrong. We are very grateful for the support we have received from the FWF, particularly since the potential – including the financial potential – that fundamental research offers for the health system seems not to have been fully recognized yet."

This study, supported by the FWF Austrian Science Fund, clearly demonstrates just how important results from fundamental research can be for state-of-the-art cancer therapy. Furthermore, studies such as this also enable health professionals to choose the optimum treatment for each individual patient from a vast range of therapies. After all, there is no one-size-fits-all treatment for cancer.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200701-2en.html

Further reports about: CXCR4 HER2/neu breast cancer ovarian receptor therapies

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>