Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disabling key protein may give physicians time to treat pneumonic plague

26.01.2007
The deadly attack of the bacterium that causes pneumonic plague is significantly slowed when it can't make use of a key protein, scientists at Washington University School of Medicine in St. Louis report in this week's issue of Science.

Speed is a primary concern in pneumonic plague, which kills in three to four days and potentially could be used in a terrorist attack. The bacterium that causes plague, Yersinia pestis, is vulnerable to antibiotics, but by the time an unusual infection becomes evident, Yersinia often has gained an unbeatable upper hand.

"By the time most doctors recognize an infection as plague, rather than the flu, it's already too late to begin antibiotic treatment," says senior author William Goldman, Ph.D., professor of molecular microbiology. "That makes pneumonic plague a concern both because of its rare natural outbreaks, one of which began in the Congo in 2005, and because of its potential use as a bioweapon."

Yersinia is best known for causing the Black Death in the Middle Ages in Europe, when historians estimate it killed a third or more of the population. Depending on how Yersinia is introduced, the versatile pathogen can modify itself to infect the lungs (pneumonic plague), the lymph glands (bubonic plague), or the bloodstream and organs (septicemic plague). Bubonic plague was spread by bites from infected fleas; pneumonic plague can spread through droplets of moisture expelled by coughing and sneezing.

... more about:
»Goldman »Infection »PLA »Yersinia »antibiotic »pneumonic

With pilot project funding from the Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Diseases Research, Wyndham Lathem, Ph.D., a postdoctoral fellow in Goldman's laboratory, developed a mouse model of pneumonic plague and showed that it had many similarities to human infection. In mice, pneumonic plague causes the lungs to fill up with a fluid composed of bacteria, inflammatory cells and other substances. Shortly before infected mice die, the bacteria also begin showing up in the spleen and other organs, spreading there via the bloodstream.

Previous research had suggested that pneumonic plague might be spreading in the body in part through use of a protein known as plasminogen activator (PLA). The protein is a protease, which degrades other proteins. Goldman, Lathem and colleagues thought PLA might be a tool Yersinia uses to break open protective blood clots that form around pockets of infection. This clotting response is believed to be a way the body attempts to limit the spread of infections: Surround a pathogen with blood clots, and it can't reproduce and spread. Scientists speculated that breaking open the clots might be how Yersinia opened a path from the lungs into the blood.

When scientists infected mice with Yersinia that lacked PLA, though, they found infection ebbing in the lungs but spreading to the spleen. The mice still died, but it took them several days longer to do so. They concluded that the aggressive pneumonia and rapid death of pneumonic plague appears to depend on the activity of PLA.

"Pharmaceutical companies have large libraries of protease inhibitors, so hopefully someone will start the search soon for an inhibitor of PLA that is specific and non-toxic enough to be used as an adjunct treatment," Goldman says. "That might give us enough time to use antibiotics to save patients afflicted with pneumonic plague." Goldman hopes to conduct follow-up studies to learn more about how plague exploits PLA.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Goldman Infection PLA Yersinia antibiotic pneumonic

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>