Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disabling key protein may give physicians time to treat pneumonic plague

26.01.2007
The deadly attack of the bacterium that causes pneumonic plague is significantly slowed when it can't make use of a key protein, scientists at Washington University School of Medicine in St. Louis report in this week's issue of Science.

Speed is a primary concern in pneumonic plague, which kills in three to four days and potentially could be used in a terrorist attack. The bacterium that causes plague, Yersinia pestis, is vulnerable to antibiotics, but by the time an unusual infection becomes evident, Yersinia often has gained an unbeatable upper hand.

"By the time most doctors recognize an infection as plague, rather than the flu, it's already too late to begin antibiotic treatment," says senior author William Goldman, Ph.D., professor of molecular microbiology. "That makes pneumonic plague a concern both because of its rare natural outbreaks, one of which began in the Congo in 2005, and because of its potential use as a bioweapon."

Yersinia is best known for causing the Black Death in the Middle Ages in Europe, when historians estimate it killed a third or more of the population. Depending on how Yersinia is introduced, the versatile pathogen can modify itself to infect the lungs (pneumonic plague), the lymph glands (bubonic plague), or the bloodstream and organs (septicemic plague). Bubonic plague was spread by bites from infected fleas; pneumonic plague can spread through droplets of moisture expelled by coughing and sneezing.

... more about:
»Goldman »Infection »PLA »Yersinia »antibiotic »pneumonic

With pilot project funding from the Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Diseases Research, Wyndham Lathem, Ph.D., a postdoctoral fellow in Goldman's laboratory, developed a mouse model of pneumonic plague and showed that it had many similarities to human infection. In mice, pneumonic plague causes the lungs to fill up with a fluid composed of bacteria, inflammatory cells and other substances. Shortly before infected mice die, the bacteria also begin showing up in the spleen and other organs, spreading there via the bloodstream.

Previous research had suggested that pneumonic plague might be spreading in the body in part through use of a protein known as plasminogen activator (PLA). The protein is a protease, which degrades other proteins. Goldman, Lathem and colleagues thought PLA might be a tool Yersinia uses to break open protective blood clots that form around pockets of infection. This clotting response is believed to be a way the body attempts to limit the spread of infections: Surround a pathogen with blood clots, and it can't reproduce and spread. Scientists speculated that breaking open the clots might be how Yersinia opened a path from the lungs into the blood.

When scientists infected mice with Yersinia that lacked PLA, though, they found infection ebbing in the lungs but spreading to the spleen. The mice still died, but it took them several days longer to do so. They concluded that the aggressive pneumonia and rapid death of pneumonic plague appears to depend on the activity of PLA.

"Pharmaceutical companies have large libraries of protease inhibitors, so hopefully someone will start the search soon for an inhibitor of PLA that is specific and non-toxic enough to be used as an adjunct treatment," Goldman says. "That might give us enough time to use antibiotics to save patients afflicted with pneumonic plague." Goldman hopes to conduct follow-up studies to learn more about how plague exploits PLA.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Goldman Infection PLA Yersinia antibiotic pneumonic

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>