Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking open the black box of autoimmune disease

23.01.2007
Autoimmune diseases such as type 1 diabetes, lupus and rheumatoid arthritis occur when the immune system fails to regulate itself. But researchers have not known precisely where the molecular breakdowns responsible for such failures occur.

Now, a team of scientists from the Whitehead Institute and the Dana-Farber Cancer Institute have identified a key set of genes that lie at the core of autoimmune disease, findings that may help scientists develop new methods for manipulating immune system activity.

"This may shorten the path to new therapies for autoimmune disease," says Whitehead Member and MIT professor of biology Richard Young, senior author on the paper that will appear January 21 online in Nature. "With this new list of genes, we can now look for possible therapies with far greater precision."

The immune system is often described as a kind of military unit, a defense network that guards the body from invaders. Seen in this way, a group of white blood cells called T cells are the frontline soldiers of immune defense, engaging invading pathogens head on.

... more about:
»Ernst & Young »Foxp3 »T cells »autoimmune »regulatory

These T cells are commanded by a second group of cells called regulatory T cells. Regulatory T cells prevent biological "friendly fire" by ensuring that the T cells do not attack the body's own tissues. Failure of the regulatory T cells to control the frontline fighters leads to autoimmune disease.

Scientists previously discovered that regulatory T cells are themselves controlled by a master gene regulator called Foxp3. Master gene regulators bind to specific genes and control their level of activity, which in turn affects the behavior of cells. In fact, when Foxp3 stops functioning, the body can no longer produce working regulatory T cells. When this happens, the frontline T cells damage multiple organs and cause symptoms of type 1 diabetes and Crohn's disease. However, until now, scientists have barely understood how Foxp3 controls regulatory T cells because they knew almost nothing about the actual genes under Foxp3's purview.

Researchers in Richard Young's Whitehead lab, working closely with immunologist Harald von Boehmer of the Dana-Farber Cancer Institute, used a DNA microarray technology developed by Young to scan the entire genome of T cells and locate the genes controlled by Foxp3. There were roughly 30 genes found to be directly controlled by Foxp3 and one, called Ptpn22, showed a particularly strong affinity.

"This relation was striking because Ptpn22 is strongly associated with type 1 diabetes, rheumatoid arthritis, lupus and Graves' disease, but the gene had not been previously linked to regulatory T-cell function," says Alexander Marson, a MD/PhD student in the Young lab and lead author on the paper. "Discovering this correlation was a big moment for us. It verified that we were on the right track for identifying autoimmune related genes."

The researchers still don't know exactly how Foxp3 enables regulatory T cells to prevent autoimmunity. But the list of the genes that Foxp3 targets provides an initial map of the circuitry of these cells, which is important for understanding how they control a healthy immune response.

"Autoimmune diseases take a tremendous toll on human health, but on a strictly molecular level, autoimmunity is a black box," says Young. "When we discover the molecular mechanisms that drive these conditions, we can migrate from treating symptoms to developing treatments for the disease itself."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Ernst & Young Foxp3 T cells autoimmune regulatory

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>