Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cracking open the black box of autoimmune disease

Autoimmune diseases such as type 1 diabetes, lupus and rheumatoid arthritis occur when the immune system fails to regulate itself. But researchers have not known precisely where the molecular breakdowns responsible for such failures occur.

Now, a team of scientists from the Whitehead Institute and the Dana-Farber Cancer Institute have identified a key set of genes that lie at the core of autoimmune disease, findings that may help scientists develop new methods for manipulating immune system activity.

"This may shorten the path to new therapies for autoimmune disease," says Whitehead Member and MIT professor of biology Richard Young, senior author on the paper that will appear January 21 online in Nature. "With this new list of genes, we can now look for possible therapies with far greater precision."

The immune system is often described as a kind of military unit, a defense network that guards the body from invaders. Seen in this way, a group of white blood cells called T cells are the frontline soldiers of immune defense, engaging invading pathogens head on.

... more about:
»Ernst & Young »Foxp3 »T cells »autoimmune »regulatory

These T cells are commanded by a second group of cells called regulatory T cells. Regulatory T cells prevent biological "friendly fire" by ensuring that the T cells do not attack the body's own tissues. Failure of the regulatory T cells to control the frontline fighters leads to autoimmune disease.

Scientists previously discovered that regulatory T cells are themselves controlled by a master gene regulator called Foxp3. Master gene regulators bind to specific genes and control their level of activity, which in turn affects the behavior of cells. In fact, when Foxp3 stops functioning, the body can no longer produce working regulatory T cells. When this happens, the frontline T cells damage multiple organs and cause symptoms of type 1 diabetes and Crohn's disease. However, until now, scientists have barely understood how Foxp3 controls regulatory T cells because they knew almost nothing about the actual genes under Foxp3's purview.

Researchers in Richard Young's Whitehead lab, working closely with immunologist Harald von Boehmer of the Dana-Farber Cancer Institute, used a DNA microarray technology developed by Young to scan the entire genome of T cells and locate the genes controlled by Foxp3. There were roughly 30 genes found to be directly controlled by Foxp3 and one, called Ptpn22, showed a particularly strong affinity.

"This relation was striking because Ptpn22 is strongly associated with type 1 diabetes, rheumatoid arthritis, lupus and Graves' disease, but the gene had not been previously linked to regulatory T-cell function," says Alexander Marson, a MD/PhD student in the Young lab and lead author on the paper. "Discovering this correlation was a big moment for us. It verified that we were on the right track for identifying autoimmune related genes."

The researchers still don't know exactly how Foxp3 enables regulatory T cells to prevent autoimmunity. But the list of the genes that Foxp3 targets provides an initial map of the circuitry of these cells, which is important for understanding how they control a healthy immune response.

"Autoimmune diseases take a tremendous toll on human health, but on a strictly molecular level, autoimmunity is a black box," says Young. "When we discover the molecular mechanisms that drive these conditions, we can migrate from treating symptoms to developing treatments for the disease itself."

David Cameron | EurekAlert!
Further information:

Further reports about: Ernst & Young Foxp3 T cells autoimmune regulatory

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>