Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role for proteomics in identifying hematologic malignancies

15.01.2007
Scientists have identified a set of biomarkers that could help clinicians identify a group of hematologic malignancies known as myelodysplastic syndromes (MDS), which affect approximately 300,000 individuals worldwide and often progress to acute myeloid leukemia.

Reported in the advance issue of the Proceedings of the National Academy of Sciences (which appears on-line the week of January 8) the findings point to a possible new diagnostic method for these malignancies, which occur when blood cells remain in an immature stage within the bone marrow and never sufficiently develop into the mature cells necessary for proper hematologic functioning. The study was led by researchers at Beth Israel Deaconess Medical Center (BIDMC) and Heinrich Heine University in Duesseldorf, Germany.

"Currently, a bone marrow biopsy is the only definitive means available to diagnose MDS," explains senior author Towia Libermann, PhD, Director of the Genomics Center at BIDMC and director of the Dana-Farber/Harvard Cancer Center Cancer Proteomics Core. "And since this group of malignancies primarily affects elderly patients, such a procedure is particularly arduous and sometimes impossible."

Therefore, first author Manuel Aivado, MD, PhD, a member of the Libermann laboratory and Lecturer in Medicine at Harvard Medical School (HMS), devised a clinical study to test whether serum proteomic profiling might be used to identify biomarkers for MDS.

The large-scale study of proteins -- including their expression, modification, composition, structure and function -- the field of proteomics is proving instrumental in the identification of molecular biomarkers, such as those that indicate a particular disease, according to Libermann, who is also Associate Professor of Medicine at HMS.

Aivado and Libermann used a combination of two technologies -- protein fractionation and mass spectrometry – to create proteome profiles from the serum of 218 patients (representing clinical trial participants from both the MDS Study Group in Duesseldorf and from BIDMC). Through these profiles, the investigators were able to successfully distinguish between cases of MDS, healthy control subjects and cases of non-MDS-related cytopenias (blood cell disorders).

"Rather than uncovering a single biomarker, we were able to identify a protein signature [or spectrum], which reproducibly identified MDS patients among three separate and distinct patient cohorts," explains Libermann. "Since many patients with autoimmune disorders are treated with cytotoxic drugs such as azathioprine or methotrexate, they become cytopenic and may be suspected of having MDS. By using this new profile, the need for bone marrow biopsies might also be reduced among this patient population."

In the second part of the study, the authors identified two separate chemokines – CXCL4 and CXCL7 – the first such molecular biomarkers for advanced MDS.

"Proteomic profiling, using in-depth mass spectrometry, follows in the footsteps of genomics and represents a critical next step in understanding the pathophysiology of diseases," says Libermann. "This study demonstrated for the first time that proteomic profiling can be used for biomarker discovery and diagnostic evaluation of hematologic malignancies, an important step in refining the diagnosis and, eventually, the treatment of this devastating malignancy."

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

Further reports about: Biomarker Libermann MDS hematologic malignancies proteomic

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>