Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC study in Nature Genetics supports a stem cell origin of cancer

11.01.2007
New USC research also bolsters belief that epigenetic events precede genetic events in cancer development

Researchers at the University of Southern California (USC) recently made significant strides toward settling a decades-old debate centering on the role played by stem cells in cancer development. According to the study's findings, which appear in an upcoming issue of Nature Genetics and now available online, genes that are reversibly repressed in embryonic stem cells are over-represented among genes that are permanently silenced in cancers; this link lends support to the increasingly discussed theory that cancer is rooted in small populations of stem cells.

USC researchers uncovered this link after observing that of 177 genes repressed by Polycomb group (PcG) proteins, fully 77 showed evidence of cancer-associated enzymatic modification of DNA (known as methylation). "Finding that a Polycomb target in an embryonic stem cell is 12 times more likely to become abnormally methylated in cancer is highly significant," says Peter Laird, Ph.D., one of the lead researchers and associate professor of surgery, biochemistry and molecular biology, and director of basic research for surgery at the Keck School of Medicine of USC.

Laird and his colleagues discovered that some genes repressed by Polycomb in embryonic stem cells are essentially pre-marked to become permanently silenced by DNA methylation. "This permanent silencing," Laird explains, "prevents embryonic stem cells from differentiating, and they thus become the seeds of cancer development later in life." USC researchers made these observations in relation to breast, colorectal, lung, and ovarian cancer.

Not only does the USC study provide empirical evidence for a stem cell origin of cancer, but, according to Laird, "It also supports a very early involvement of epigenetics in cancer. We found that cancer arises in cells that have already undergone epigenetic alterations," he adds, "which points to epigenetic events preceding genetic events in cancer development." Laird notes that this theory, while relatively new, is gaining support among scientists.

Findings from the USC study also can be applied to stem cell research funded by the California Institute for Regenerative Medicine (CIRM), which was created through passage of California Proposition 71 in 2004. "One of CIRM's aims," says Laird, "is to culture and differentiate embryonic stems cells – cells that would then be placed into patients. Since our research shows that cancer is rooted in stem cells, it would be very important to screen for the epigenetic abnormalities that we uncovered, so as to prevent people from receiving potentially cancer-prone cells."

Looking ahead, Laird and his USC colleagues would next like to focus on what causes some genes to transition from temporary repression to permanent silencing. "Once we determine that," Laird explains, "we can turn to the fundamental question: How can we prevent this transition?"

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Cancer Embryonic USC embryonic stem embryonic stem cell

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>