Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC study in Nature Genetics supports a stem cell origin of cancer

11.01.2007
New USC research also bolsters belief that epigenetic events precede genetic events in cancer development

Researchers at the University of Southern California (USC) recently made significant strides toward settling a decades-old debate centering on the role played by stem cells in cancer development. According to the study's findings, which appear in an upcoming issue of Nature Genetics and now available online, genes that are reversibly repressed in embryonic stem cells are over-represented among genes that are permanently silenced in cancers; this link lends support to the increasingly discussed theory that cancer is rooted in small populations of stem cells.

USC researchers uncovered this link after observing that of 177 genes repressed by Polycomb group (PcG) proteins, fully 77 showed evidence of cancer-associated enzymatic modification of DNA (known as methylation). "Finding that a Polycomb target in an embryonic stem cell is 12 times more likely to become abnormally methylated in cancer is highly significant," says Peter Laird, Ph.D., one of the lead researchers and associate professor of surgery, biochemistry and molecular biology, and director of basic research for surgery at the Keck School of Medicine of USC.

Laird and his colleagues discovered that some genes repressed by Polycomb in embryonic stem cells are essentially pre-marked to become permanently silenced by DNA methylation. "This permanent silencing," Laird explains, "prevents embryonic stem cells from differentiating, and they thus become the seeds of cancer development later in life." USC researchers made these observations in relation to breast, colorectal, lung, and ovarian cancer.

Not only does the USC study provide empirical evidence for a stem cell origin of cancer, but, according to Laird, "It also supports a very early involvement of epigenetics in cancer. We found that cancer arises in cells that have already undergone epigenetic alterations," he adds, "which points to epigenetic events preceding genetic events in cancer development." Laird notes that this theory, while relatively new, is gaining support among scientists.

Findings from the USC study also can be applied to stem cell research funded by the California Institute for Regenerative Medicine (CIRM), which was created through passage of California Proposition 71 in 2004. "One of CIRM's aims," says Laird, "is to culture and differentiate embryonic stems cells – cells that would then be placed into patients. Since our research shows that cancer is rooted in stem cells, it would be very important to screen for the epigenetic abnormalities that we uncovered, so as to prevent people from receiving potentially cancer-prone cells."

Looking ahead, Laird and his USC colleagues would next like to focus on what causes some genes to transition from temporary repression to permanent silencing. "Once we determine that," Laird explains, "we can turn to the fundamental question: How can we prevent this transition?"

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Cancer Embryonic USC embryonic stem embryonic stem cell

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>