Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody therapy prevents type 1 diabetes in mice

10.01.2007
University of Pittsburgh investigators have successfully prevented the onset of type 1 diabetes in mice prone to developing the disease using an antibody against a receptor on the surface of immune T-cells. According to the investigators, these findings, which are being published in the January issue of the journal Diabetes, have significant implications for the prevention of type 1 diabetes.

More than 700,000 Americans have type 1 diabetes, an autoimmune disorder in which the body errantly attacks the insulin-producing cells of the pancreas, causing chronically elevated levels of sugar in the blood, leading to blindness, kidney failure, heart disease and nerve damage. Previously known as juvenile diabetes, type 1 diabetes is usually diagnosed at a very early age, but in some cases it can be diagnosed in adulthood.

In this study, the Pitt researchers treated non-obese diabetic (NOD) mice with an antibody -- a type of protein produced by the immune system that recognizes and helps fight infections and other foreign substances in the body -- directed against a receptor known as CD137 on the surface of a type of immune cell called T-cells. Treating NOD mice with the anti-CD137 antibodies significantly suppressed the development of diabetes, whereas most of the control mice developed diabetes by the time they were six months old.

Interestingly, the antibody therapy did not appear to cure the NOD mice because the researchers were still able to see lymphocytes in their pancreatic islets, a tell-tale sign of pancreatic inflammation and autoimmunity. In addition, when the researchers isolated cells from the spleens of the antibody-treated mice and injected these cells into immune-deficient NOD mice, seven of the nine recipient mice developed type 1 diabetes, indicating that the donor mice still harbored pathogenic T-cells. On the other hand, when the researchers transferred a certain subset of T-cells from anti-CD137-treated mice that expressed two other receptors known as CD4 and CD25 to other immune-deficient NOD mice, it prevented the onset of diabetes in the recipient mice.

... more about:
»Diabetes »NOD »T-Cells »type 1 diabetes

According to senior author William M. Ridgway, M.D., assistant professor in the University of Pittsburgh School of Medicine's department of rheumatology and clinical immunology, this therapy, if given early enough, may offer a viable method for preventing the onset of type 1 diabetes in genetically at-risk people.

"Our studies and others suggest that CD137 plays a significant role in the development of and genetic predisposition to type 1 diabetes. In this study, for the first time, we have demonstrated that CD137 antibody therapy can suppress the development of type 1 diabetes in mice and that the effect is dependent on the induction of a certain subset of regulatory T-cells. If we can demonstrate this same genetic predisposition and therapeutic effect in human type 1 diabetes patients, then this may prove to be a significant step toward preventing this disease before it can take hold," he explained.

Jim Swyers | EurekAlert!

Further reports about: Diabetes NOD T-Cells type 1 diabetes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>