Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There's no scent like home

09.01.2007
New research shows larval fish use smell to return to coral reefs

Tiny larval fish living among Australia's Great Barrier Reef spend the early days of their lives swept up in ocean currents that disperse them far from their places of birth. Given such a life history, one might assume that fish populations would be genetically homogeneous within the dispersal area. Yet the diversity of reef fish species is high and individual reefs contain different fish populations. For such rich biodiversity to have evolved, some form of population isolation is required.

New research from MBL (Marine Biological Laboratory) Associate Scientist Gabriele Gerlach, MBL Adjunct Senior Scientist Jelle Atema, and their colleagues shows that some fish larvae can discriminate odors in ocean currents and use scent to return to the reefs where they were born. The olfactory imprinting of natal reefs sheds light on how such a wide diversity of species arose. The homing behavior of reef fishes, the researchers contend, could support population isolation and genetic divergence that may ultimately lead to the formation of new species.

Gerlach, Atema, and their team will present the results of their research in next week's online Early Edition of The Proceedings of the National Academy of Sciences. The scientists studied fish populations in five neighboring reefs (all part of the Great Barrier Reef) where genetic mixing would be expected. They used a multidisciplinary approach including hydrodynamic modeling to describe prevailing ocean current distribution patterns among the reefs; genetic markers to track the relatedness of three species of fishes which live among the reefs; and olfactory choice tests using flumes to test the larvae's ability to smell the difference between water from the five reefs.

... more about:
»Population »larvae »odor

Their genetic analyses showed that while some fish species do disperse, other species return to their home reef. One species in particular, the cardinal fish (Ostorinchus doederleini), showed significant genetic differences among subpopulations even among reefs separated by as little as 3 km, which suggests strong homing. Using a flume aboard their boat, which exposed larvae to water samples collected from different reefs, the researchers tested if smell might be guiding factor leading the larvae home. The cardinal fish showed a preference for the water from their home reef over all other reefs, suggesting that olfactory cues could lead larvae back.

"This research shows that the spatial distribution of these aquatic organisms is far from being random despite long larval dispersal stages of several weeks," says Gerlach. "Apparently, these larvae--small as they are--use elaborate sensory mechanisms to orientate and find their way to appropriate habitats or express successful homing behavior to their natal spawning sites. This might play a major role in processes of population separation and, eventually, of speciation."

According to Gerlach, the results of this research could have important implications not only for the Great Barrier Reef, but for marine environments in general. "This information should be considered by marine managers as they designate the location and spacing of Marine Protected Areas," she says.

There are still many questions that remain to be answered. For example, Gerlach and Atema's results have not shown how the larvae learn the odor of their reef or how and when during development they use this information. Paper co-author Vanessa Miller-Sims is completing her Ph.D. thesis at Boston University with a focus on this subject. The scientists also do not know the chemical composition of the odor that the larvae use to recognize home. "It may be social odor from its own species or a peculiar mixture of compounds typical for one versus another reef, the way people's homes have typical odors," says Atema. "This chemical information will be important in terms of water quality and management. We are following up with research to obtain such knowledge."

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

Further reports about: Population larvae odor

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>