Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New HIV test may predict drug resistance

09.01.2007
Researchers at Duke University Medical Center have developed a highly sensitive test for identifying which drug-resistant strains of HIV are harbored in a patient's bloodstream.

The test may provide physicians with a tool to guide patient treatment by predicting if a patient is likely to become resistant to a particular HIV drug, said one of its developers, Feng Gao, M.D., associate professor of medicine. Drug resistance is one of the most common reasons why therapy for HIV, the virus that causes AIDS, fails.

The test, which detects genetic changes, or mutations, in HIV, also may help scientists understand how the constantly evolving virus develops drug resistance, Gao said. He said such knowledge ultimately may result in the development of new treatments designed to evade resistance.

The findings will appear online on Sunday, Jan. 7, 2007, in the journal Nature Methods, as well as in the journal's February 2007 print edition. The work was supported by the National Institutes of Health and the Duke Center for AIDS Research.

... more about:
»Gao »HIV »Mutation »blood sample »mutated »resistance

Duke has filed for a provisional patent on the technology, and the researchers are considering ways to establish a new company to pursue its development or to license the technology to an existing company, Gao said.

Because HIV genes mutate so easily and the virus reproduces so rapidly, most people who are infected have many different forms of the virus in their bodies. In some cases, mutated strains take on new properties that make them more resistant to the drugs used in antiretroviral therapy, the primary means of treatment for HIV infection.

During antiretroviral therapy that does not fully suppress the virus, a strain that develops drug resistance will grow more quickly than strains lacking such resistance, and the resistant strain will replicate to become the most prominent virus in the person's body.

"The viral populations found in the blood of one patient can be very different from the populations present in another," Gao said. "Which resistant viruses are at hand can have important implications for the successful treatment of that patient."

More than 20 drugs currently are available for treating HIV infection. All but one of the drugs target two of the genes that serve as blueprints for vital protein components of HIV: reverse transcriptase and protease.

The Duke test examines the genes of HIV strains for mutations at certain positions that are known to be linked to drug resistance. For example, a change at a specific spot along the genetic code -- position 46 -- of the protease gene results in resistance to the drug indinavir.

To assess the test, the researchers analyzed blood samples from three different groups of HIV patients: those who had never received antiretroviral treatment, those who had received treatment but were not currently being treated and those who were receiving treatment but the treatment was not completely successful.

After processing the blood samples and isolating the genetic material in each of them, the researchers added tiny fluorescent tags designed to stick to HIV genes in particular ways. Tags designed to stick to mutated gene locations known to produce drug resistance were labeled to appear green, while tags designed to stick to the same gene locations but where the genes had not mutated were labeled to appear red.

The researchers used a sophisticated computer program to count the number of molecules with green or red fluorescent tags in each sample. The test proved sensitive enough to detect a single mutated virus out of 10,000 nonmutated viruses in the patient samples, Gao said.

"This level of sensitivity makes the assay about 1,000 times more sensitive than the most widely used assays on the market for detecting drug-resistant HIV viruses" Gao said. "Thus, the assay may permit more accurate prediction of treatment outcomes."

The test also can detect when a virus molecule has more than one mutation, a capability that no commercially available test has achieved, Gao said. This capability may prove critical for detecting HIV strains that have become resistant to multiple drugs, a condition that occurs often as many patients are treated with many drugs at the same time.

The test may find broader medical application as well, Gao said. He said it has the potential to detect mutations that confer drug resistance in infectious agents that cause other diseases besides HIV, such as hepatitis B, hepatitis C and tuberculosis.

Marla Vacek Broadfoot | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Gao HIV Mutation blood sample mutated resistance

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>