Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Converting Nitrogen to a More Useful Form

Nitrogen fixation: Hafnium complex couples atmospheric nitrogen with carbon dioxide

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot be used for chemical syntheses: nitrogen gas, a molecule made of two nitrogen atoms, is highly inert. The main source of nitrogen today involves a detour by way of synthetic ammonia, a process requiring a lot of energy and explosive hydrogen gas under harsh conditions.

In order to find synthetic pathways that do not rely on ammonia, scientists are searching for ways to fix atmospheric nitrogen in the form of higher-value organic compounds. Chemists working with Paul J. Chirik at Cornell University (Ithaca, New York) have now found an interesting new method, which they describe in the journal Angewandte Chemie: they have bound nitrogen to carbon dioxide while maintaining the nitrogen–nitrogen bond, forming a hydrazine derivative. The metal hafnium promotes this reaction.

The two nitrogen atoms in a nitrogen molecule are so happy with each other that they have little incentive to enter into chemical bonds with other atoms. Direct formation of a bond between carbon and nitrogen, a requirement for the formation of organonitrogen compounds without resorting to ammonia, is a serious challenge for scientists. The nitrogen has to be “outsmarted”. While it does not easily enter into chemical bonds with organic substances, molecular nitrogen does have a tendency to form coordination complexes by binding to a metal. When the nitrogen acts as ligand in these complexes, it receives electrons from the metal atom disrupting the strong nitrogen-to-nitrogen triple bond. Chemists often refer to this process as “activating” the nitrogen ligand, as new chemistry is now possible.

... more about:
»Atom »Carbon »Hafnium »compound »dioxide »nitrogen

Chirik and his co-workers found out that the nitrogen gets activated just right in a hafnocene complex (whose hafnium atoms each have two aromatic five-membered carbon rings as additional ligands), in which the nitrogen molecule is grabbed side-on by two hafnium atoms,. Carbon dioxide can then react with the activated nitrogen molecule. Two carbon dioxide molecules push their way in between the nitrogen and the hafnium. One of the two nitrogen atoms thus forms two strong new bonds to two carbon atoms from the carbon dioxide. One of the nitrogen–nitrogen bonds remains intact. By using an organosilicon compound, the cores of the hafnocene complexes can be released—in the form of a silicon-containing organic hydrazine derivative.

Author: Paul J. Chirik, Cornell University, Ithaca (USA),

Title: Nitrogen–Carbon Bond Formation from N2 and CO2 Promoted by a Hafnocene Dinitrogen Complex Gives Access to a Substituted Hydrazine

Angewandte Chemie International Edition, doi: 10.1002/anie.200604099

| Angewandte Chemie
Further information:

Further reports about: Atom Carbon Hafnium compound dioxide nitrogen

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>