Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converting Nitrogen to a More Useful Form

09.01.2007
Nitrogen fixation: Hafnium complex couples atmospheric nitrogen with carbon dioxide

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot be used for chemical syntheses: nitrogen gas, a molecule made of two nitrogen atoms, is highly inert. The main source of nitrogen today involves a detour by way of synthetic ammonia, a process requiring a lot of energy and explosive hydrogen gas under harsh conditions.

In order to find synthetic pathways that do not rely on ammonia, scientists are searching for ways to fix atmospheric nitrogen in the form of higher-value organic compounds. Chemists working with Paul J. Chirik at Cornell University (Ithaca, New York) have now found an interesting new method, which they describe in the journal Angewandte Chemie: they have bound nitrogen to carbon dioxide while maintaining the nitrogen–nitrogen bond, forming a hydrazine derivative. The metal hafnium promotes this reaction.

The two nitrogen atoms in a nitrogen molecule are so happy with each other that they have little incentive to enter into chemical bonds with other atoms. Direct formation of a bond between carbon and nitrogen, a requirement for the formation of organonitrogen compounds without resorting to ammonia, is a serious challenge for scientists. The nitrogen has to be “outsmarted”. While it does not easily enter into chemical bonds with organic substances, molecular nitrogen does have a tendency to form coordination complexes by binding to a metal. When the nitrogen acts as ligand in these complexes, it receives electrons from the metal atom disrupting the strong nitrogen-to-nitrogen triple bond. Chemists often refer to this process as “activating” the nitrogen ligand, as new chemistry is now possible.

... more about:
»Atom »Carbon »Hafnium »compound »dioxide »nitrogen

Chirik and his co-workers found out that the nitrogen gets activated just right in a hafnocene complex (whose hafnium atoms each have two aromatic five-membered carbon rings as additional ligands), in which the nitrogen molecule is grabbed side-on by two hafnium atoms,. Carbon dioxide can then react with the activated nitrogen molecule. Two carbon dioxide molecules push their way in between the nitrogen and the hafnium. One of the two nitrogen atoms thus forms two strong new bonds to two carbon atoms from the carbon dioxide. One of the nitrogen–nitrogen bonds remains intact. By using an organosilicon compound, the cores of the hafnocene complexes can be released—in the form of a silicon-containing organic hydrazine derivative.

Author: Paul J. Chirik, Cornell University, Ithaca (USA), http://www.chem.cornell.edu/faculty/index.asp?fac=19

Title: Nitrogen–Carbon Bond Formation from N2 and CO2 Promoted by a Hafnocene Dinitrogen Complex Gives Access to a Substituted Hydrazine

Angewandte Chemie International Edition, doi: 10.1002/anie.200604099

| Angewandte Chemie
Further information:
http://www.chem.cornell.edu/faculty/index.asp?fac=19
http://pressroom.angewandte.org.
http://www.wiley.co.uk

Further reports about: Atom Carbon Hafnium compound dioxide nitrogen

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>