Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converting Nitrogen to a More Useful Form

09.01.2007
Nitrogen fixation: Hafnium complex couples atmospheric nitrogen with carbon dioxide

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot be used for chemical syntheses: nitrogen gas, a molecule made of two nitrogen atoms, is highly inert. The main source of nitrogen today involves a detour by way of synthetic ammonia, a process requiring a lot of energy and explosive hydrogen gas under harsh conditions.

In order to find synthetic pathways that do not rely on ammonia, scientists are searching for ways to fix atmospheric nitrogen in the form of higher-value organic compounds. Chemists working with Paul J. Chirik at Cornell University (Ithaca, New York) have now found an interesting new method, which they describe in the journal Angewandte Chemie: they have bound nitrogen to carbon dioxide while maintaining the nitrogen–nitrogen bond, forming a hydrazine derivative. The metal hafnium promotes this reaction.

The two nitrogen atoms in a nitrogen molecule are so happy with each other that they have little incentive to enter into chemical bonds with other atoms. Direct formation of a bond between carbon and nitrogen, a requirement for the formation of organonitrogen compounds without resorting to ammonia, is a serious challenge for scientists. The nitrogen has to be “outsmarted”. While it does not easily enter into chemical bonds with organic substances, molecular nitrogen does have a tendency to form coordination complexes by binding to a metal. When the nitrogen acts as ligand in these complexes, it receives electrons from the metal atom disrupting the strong nitrogen-to-nitrogen triple bond. Chemists often refer to this process as “activating” the nitrogen ligand, as new chemistry is now possible.

... more about:
»Atom »Carbon »Hafnium »compound »dioxide »nitrogen

Chirik and his co-workers found out that the nitrogen gets activated just right in a hafnocene complex (whose hafnium atoms each have two aromatic five-membered carbon rings as additional ligands), in which the nitrogen molecule is grabbed side-on by two hafnium atoms,. Carbon dioxide can then react with the activated nitrogen molecule. Two carbon dioxide molecules push their way in between the nitrogen and the hafnium. One of the two nitrogen atoms thus forms two strong new bonds to two carbon atoms from the carbon dioxide. One of the nitrogen–nitrogen bonds remains intact. By using an organosilicon compound, the cores of the hafnocene complexes can be released—in the form of a silicon-containing organic hydrazine derivative.

Author: Paul J. Chirik, Cornell University, Ithaca (USA), http://www.chem.cornell.edu/faculty/index.asp?fac=19

Title: Nitrogen–Carbon Bond Formation from N2 and CO2 Promoted by a Hafnocene Dinitrogen Complex Gives Access to a Substituted Hydrazine

Angewandte Chemie International Edition, doi: 10.1002/anie.200604099

| Angewandte Chemie
Further information:
http://www.chem.cornell.edu/faculty/index.asp?fac=19
http://pressroom.angewandte.org.
http://www.wiley.co.uk

Further reports about: Atom Carbon Hafnium compound dioxide nitrogen

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>