Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid molecule causes cancer cells to self-destruct

08.01.2007
Lab tests of sugar and short-chain fatty acid combo point to new strategy to combat disease

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, described in the December issue of the journal Chemistry & Biology, has not yet been tested on animals or humans. Nevertheless, they believe it represents a promising new strategy for fighting the deadly disease.

"For a long time, cancer researchers did not pay much attention to the use of sugars in fighting cancer," said Gopalan Sampathkumar, a postdoctoral fellow in the university's Department of Biomedical Engineering and lead author of the journal article. "But we found that when the right sugar is matched with the right chemical partner, it can deliver a powerful double-whammy against cancer cells."

Sampathkumar and his colleagues built upon 20-year-old findings that a short-chain fatty acid called butyrate can slow the spread of cancer cells. In the 1980s, researchers discovered that butyrate, which is formed naturally at high levels in the digestive system by symbiotic bacteria that feed on fiber, can restore healthy cell functioning.

Efforts to use butyrate as a general drug for tumors elsewhere in the body, however, have been hindered by the high doses of the compound needed to effectively eradicate cancer. To get around this problem, scientists have tried to make butyrate more potent by modifying it or joining it to other compounds. Usually, the results have been disappointing because the molecular partner added to butyrate to improve delivery to the cancer cells often produced unsafe side effects.

In some of the less successful experiments, designed to avoid toxic side effects, researchers used innocuous sugar molecules such as glucose to carry butyrate into the cells. The Johns Hopkins team tried a different tack. "We didn't think they chose the right partner molecule," said Kevin J. Yarema, an assistant professor of biomedical engineering who supervised the project. "Our insight was to select the sugar partner to serve not just as a passive carrier but as additional ammunition in the fight against cancer."

The researchers focused on a sugar called N-acetyl-D-mannosamine, or ManNAc, for short. The team created a hybrid molecule by linking ManNAc with butyrate. The hybrid easily penetrates a cell's surface, then is split apart by enzymes inside the cell. Once inside the cell, ManNAc is processed into another sugar known as sialic acid that plays key roles in cancer biology, while butyrate orchestrates the expression of genes responsible for halting the uncontrolled growth of cancer cells.

Although the study of the exact molecular mechanism is in its early stages, the researchers believe the separate chemical components work together to bolster the cancer-fighting power of butyrate. The double attack triggers cellular suicide, also called apoptosis, in the cancer cells.

To find out whether this butyrate-ManNAc hybrid alone would produce the positive results, the researchers tested three other sugar-butyrate combinations and a butyrate salt compound with no sugar attached. The four other formulas and the butyrate-ManNAc hybrid were each added to lab dishes containing cancer cells. After three to five days, cancer growth had slowed in all of the dishes. After 15 days, however, cancer growth had resumed in dishes treated with four of the compounds. But in samples treated with the butyrate-ManNAc hybrid, all of the cancer cells had died.

The researchers also wanted to find out whether administering the two parts of the hybrid independently would achieve the same result. But in these experiments, the cancer cells did not self-destruct. The researchers suspect this is because the hybrid molecules more easily penetrate the surface of the cell than the individual chemicals. Once the components are inside, the researchers believe the partners help enzymes to resume the normal assembly of sugar molecules and correct aberrant gene expression patterns, two processes that go awry when cancer occurs.

Now that they've identified the butyrate-ManNAc molecule as a potential cancer fighter, the Johns Hopkins team members are expanding their research, looking for new drug-delivery methods and preparing for animal testing. The researchers believe the hybrid molecule will have minimal effect on healthy cells. Through the Johns Hopkins Technology Transfer Office, they have filed an application for a U.S. patent covering this class of compounds.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.bme.jhu.edu
http://www.functionalglycomics.org/

Further reports about: Cancer HYBRID butyrate butyrate-ManNAc cancer cells

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>