Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid molecule causes cancer cells to self-destruct

08.01.2007
Lab tests of sugar and short-chain fatty acid combo point to new strategy to combat disease

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, described in the December issue of the journal Chemistry & Biology, has not yet been tested on animals or humans. Nevertheless, they believe it represents a promising new strategy for fighting the deadly disease.

"For a long time, cancer researchers did not pay much attention to the use of sugars in fighting cancer," said Gopalan Sampathkumar, a postdoctoral fellow in the university's Department of Biomedical Engineering and lead author of the journal article. "But we found that when the right sugar is matched with the right chemical partner, it can deliver a powerful double-whammy against cancer cells."

Sampathkumar and his colleagues built upon 20-year-old findings that a short-chain fatty acid called butyrate can slow the spread of cancer cells. In the 1980s, researchers discovered that butyrate, which is formed naturally at high levels in the digestive system by symbiotic bacteria that feed on fiber, can restore healthy cell functioning.

Efforts to use butyrate as a general drug for tumors elsewhere in the body, however, have been hindered by the high doses of the compound needed to effectively eradicate cancer. To get around this problem, scientists have tried to make butyrate more potent by modifying it or joining it to other compounds. Usually, the results have been disappointing because the molecular partner added to butyrate to improve delivery to the cancer cells often produced unsafe side effects.

In some of the less successful experiments, designed to avoid toxic side effects, researchers used innocuous sugar molecules such as glucose to carry butyrate into the cells. The Johns Hopkins team tried a different tack. "We didn't think they chose the right partner molecule," said Kevin J. Yarema, an assistant professor of biomedical engineering who supervised the project. "Our insight was to select the sugar partner to serve not just as a passive carrier but as additional ammunition in the fight against cancer."

The researchers focused on a sugar called N-acetyl-D-mannosamine, or ManNAc, for short. The team created a hybrid molecule by linking ManNAc with butyrate. The hybrid easily penetrates a cell's surface, then is split apart by enzymes inside the cell. Once inside the cell, ManNAc is processed into another sugar known as sialic acid that plays key roles in cancer biology, while butyrate orchestrates the expression of genes responsible for halting the uncontrolled growth of cancer cells.

Although the study of the exact molecular mechanism is in its early stages, the researchers believe the separate chemical components work together to bolster the cancer-fighting power of butyrate. The double attack triggers cellular suicide, also called apoptosis, in the cancer cells.

To find out whether this butyrate-ManNAc hybrid alone would produce the positive results, the researchers tested three other sugar-butyrate combinations and a butyrate salt compound with no sugar attached. The four other formulas and the butyrate-ManNAc hybrid were each added to lab dishes containing cancer cells. After three to five days, cancer growth had slowed in all of the dishes. After 15 days, however, cancer growth had resumed in dishes treated with four of the compounds. But in samples treated with the butyrate-ManNAc hybrid, all of the cancer cells had died.

The researchers also wanted to find out whether administering the two parts of the hybrid independently would achieve the same result. But in these experiments, the cancer cells did not self-destruct. The researchers suspect this is because the hybrid molecules more easily penetrate the surface of the cell than the individual chemicals. Once the components are inside, the researchers believe the partners help enzymes to resume the normal assembly of sugar molecules and correct aberrant gene expression patterns, two processes that go awry when cancer occurs.

Now that they've identified the butyrate-ManNAc molecule as a potential cancer fighter, the Johns Hopkins team members are expanding their research, looking for new drug-delivery methods and preparing for animal testing. The researchers believe the hybrid molecule will have minimal effect on healthy cells. Through the Johns Hopkins Technology Transfer Office, they have filed an application for a U.S. patent covering this class of compounds.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.bme.jhu.edu
http://www.functionalglycomics.org/

Further reports about: Cancer HYBRID butyrate butyrate-ManNAc cancer cells

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>