Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting to the bottom of memory

For the first time researchers investigate the molecular basis of memory in living mice

Phone numbers, the way to work, granny’s birthday – our brain with its finite number of nerve cells can store incredible amounts of information. At the bottom of memory lies a complex network of molecules. To understand how this network brings about one of the most remarkable capacities of our brain we need to identify its components and their interactions.

Researchers from the European Molecular Biology Laboratory’s (EMBL) Mouse Biology Unit in Monterotondo, Italy, and the Universidad Pablo de Olavide in Sevilla, Spain, now for the first time investigate the molecular basis of memory in living mice. The study, which appears in the current issue of Learning and Memory, identified a molecule that is crucially involved in learning and singled out the signaling pathway through which it affects memory.

Our sense organs inform our brain about what happens around us and brain cells communicate this information between each other using electrical signals. These signals become stronger the more often a cell experiences the same stimulus allowing it to distinguish familiar information from news. In other words a cell remembers an event as an unusually strong and long-lasting signal. This phenomenon called long-term potentiation (LTP) is thought to underpin learning and memory and its molecular basis is being investigated intensively.

... more about:
»LTP »Molecular »TrkB »molecular basis

“It is difficult to study a dynamic process like memory in the test tube,” says Liliana Minichiello, whose group carried out the study at EMBL’s Mouse Biology Unit in collaboration with Agnès Gruart at the Universidad Pablo de Olavide in Sevilla, Spain, who performed the behavior and in vivo recordings. “To assess if the molecular mechanisms that generate LTP also underpin memory formation you need to study a living animal while it is learning.”

Minichiello and her team combined molecular, electrophysiological and behavioural methods in a sophisticated mouse model. This new approach allowed them for the first time to start dissecting the molecular basis of LTP while simultaneously addressing effects on learning and memory. Using genetic methods they generated mouse strains with a defective version of a receptor molecule called TrkB. TrkB is found on the surface of cells in the hippocampus, an area of the brain involved in memory formation, and translates incoming signals into cellular responses. Mice with the defective TrkB, which is incapable to activate an important signaling pathway involving the protein PLCg, were no longer able to learn. At the same time the LTP that normal hippocampal cells generate in response to familiar stimuli was abolished.

“TrkB and the PLCg activated signaling pathway are central to both LTP and learning. For the first time we have been able to prove that LTP and learning do in fact have a common molecular basis,” says José Delgado-García from the University of Sevilla.

For the future Minichiello and her lab are aiming to gain an even better understanding of TrkB and its role in learning and memory. Their research might give new impulses also to studies concerned with human memory, because underlying molecular pathways are likely to be conserved between species.

Anna-Lynn Wegener | alfa
Further information:

Further reports about: LTP Molecular TrkB molecular basis

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>