Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling of cancer genes may lead to better and earlier detection

27.12.2006
A research team at UT Southwestern Medical Center has for the first time identified several genes whose expression is lost in four of the most common solid human cancers – lung, breast, prostate and colon cancer.

The findings, which researchers say could form the basis for a new early detection screen for certain cancers, are published today in the online journal Public Library of Science Medicine.

The expression of genes that inhibit cancer development, so-called tumor suppressor genes, is often lost in tumor cells. This can occur through a mutation in the gene's DNA sequence or through deletion of the gene. Loss of tumor suppression function also can occur in a process called methylation, where a chemical called a methyl group is attached to a DNA region near the gene and prevents it from being activated, essentially "silencing" the gene.

"These results show the power of studying tumors on a genome-wide basis, looking at many genes at the same time," said Dr. John Minna, the study's senior author and director of the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics and the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern.

... more about:
»Detection »Expression »Shames »breast »methylation

In an effort to identify new tumor-suppressor genes that might be important to lung and breast cancer development, the UT Southwestern team examined which genes are active in those kinds of tumors and compared them to gene expression profiles from normal lung epithelial cells. The researchers then examined the gene expression profiles of these various cell types before and after treatment with a drug that inhibits methylation.

The researchers identified approximately 130 genes that may be methylated and thus silenced in lung, breast, prostate and colon cancers. They analyzed 45 of these new genes in both normal and cancerous tissues from the same patients and found that many of the genes were methylated specifically in the tumor samples.

"We ended up with a large number of genes that are involved in the development of lung cancer that, despite years of work in the field, I had never connected to lung cancer before," said Dr. Minna.

Patient samples from UT Southwestern's new Harold C. Simmons Comprehensive Cancer Center tissue repository and previous results from study author Dr. David Euhus allowed the research team to quickly extend its findings to breast, prostate and colon cancer. A Hamon Center postdoctoral researcher and lead study author Dr. David Shames was instrumental in identifying the genes, Dr. Minna said.

"What would have normally taken us several years, David Shames was able to determine in less than a month," Dr. Minna said. "The new genes Dr. Shames discovered are now forming the basis for a new early detection screen that could be mounted against the most common human cancers."

The genes the researchers found to be methylated specifically in the tumor samples might control the conversion of normal cells into cancer cells, Dr. Minna said, but this possibility needs to be tested on a case-by-case basis.

Although it is known that gene expression patterns in tumors vary greatly from tissue to tissue, the researchers hope that the similarities of the methylation patterns found in this study might lead to a better approach to detect cancer early and help identify new promising therapeutic targets to treat some of the most prevalent cancers.

"The findings from our study suggest that it may be possible to develop a methylation profiling platform that could be used to screen patients for common solid tumors, while at the same time identify what type of tumor the patient may have," Dr. Shames said.

The study also illustrates that some of the basic processes that underlie the development of breast and lung cancer are identical, even though the chemicals that initiate those processes – estrogen and tobacco carcinogens, for example – may be different, said Dr. Euhus, associate professor of surgical oncology.

"I was also struck that some of these processes could be detected in benign breast cells from high-risk women, more so than in lower-risk women," said Dr. Euhus, co-director of the Mary L. Brown Breast Cancer Genetics and Risk Assessment Program. "Methylation is potentially a reversible change and there may be some interventions that would effectively reduce the risk of several types of cancer simultaneously."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Detection Expression Shames breast methylation

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>