Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling of cancer genes may lead to better and earlier detection

27.12.2006
A research team at UT Southwestern Medical Center has for the first time identified several genes whose expression is lost in four of the most common solid human cancers – lung, breast, prostate and colon cancer.

The findings, which researchers say could form the basis for a new early detection screen for certain cancers, are published today in the online journal Public Library of Science Medicine.

The expression of genes that inhibit cancer development, so-called tumor suppressor genes, is often lost in tumor cells. This can occur through a mutation in the gene's DNA sequence or through deletion of the gene. Loss of tumor suppression function also can occur in a process called methylation, where a chemical called a methyl group is attached to a DNA region near the gene and prevents it from being activated, essentially "silencing" the gene.

"These results show the power of studying tumors on a genome-wide basis, looking at many genes at the same time," said Dr. John Minna, the study's senior author and director of the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics and the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern.

... more about:
»Detection »Expression »Shames »breast »methylation

In an effort to identify new tumor-suppressor genes that might be important to lung and breast cancer development, the UT Southwestern team examined which genes are active in those kinds of tumors and compared them to gene expression profiles from normal lung epithelial cells. The researchers then examined the gene expression profiles of these various cell types before and after treatment with a drug that inhibits methylation.

The researchers identified approximately 130 genes that may be methylated and thus silenced in lung, breast, prostate and colon cancers. They analyzed 45 of these new genes in both normal and cancerous tissues from the same patients and found that many of the genes were methylated specifically in the tumor samples.

"We ended up with a large number of genes that are involved in the development of lung cancer that, despite years of work in the field, I had never connected to lung cancer before," said Dr. Minna.

Patient samples from UT Southwestern's new Harold C. Simmons Comprehensive Cancer Center tissue repository and previous results from study author Dr. David Euhus allowed the research team to quickly extend its findings to breast, prostate and colon cancer. A Hamon Center postdoctoral researcher and lead study author Dr. David Shames was instrumental in identifying the genes, Dr. Minna said.

"What would have normally taken us several years, David Shames was able to determine in less than a month," Dr. Minna said. "The new genes Dr. Shames discovered are now forming the basis for a new early detection screen that could be mounted against the most common human cancers."

The genes the researchers found to be methylated specifically in the tumor samples might control the conversion of normal cells into cancer cells, Dr. Minna said, but this possibility needs to be tested on a case-by-case basis.

Although it is known that gene expression patterns in tumors vary greatly from tissue to tissue, the researchers hope that the similarities of the methylation patterns found in this study might lead to a better approach to detect cancer early and help identify new promising therapeutic targets to treat some of the most prevalent cancers.

"The findings from our study suggest that it may be possible to develop a methylation profiling platform that could be used to screen patients for common solid tumors, while at the same time identify what type of tumor the patient may have," Dr. Shames said.

The study also illustrates that some of the basic processes that underlie the development of breast and lung cancer are identical, even though the chemicals that initiate those processes – estrogen and tobacco carcinogens, for example – may be different, said Dr. Euhus, associate professor of surgical oncology.

"I was also struck that some of these processes could be detected in benign breast cells from high-risk women, more so than in lower-risk women," said Dr. Euhus, co-director of the Mary L. Brown Breast Cancer Genetics and Risk Assessment Program. "Methylation is potentially a reversible change and there may be some interventions that would effectively reduce the risk of several types of cancer simultaneously."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Detection Expression Shames breast methylation

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>