Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling of cancer genes may lead to better and earlier detection

27.12.2006
A research team at UT Southwestern Medical Center has for the first time identified several genes whose expression is lost in four of the most common solid human cancers – lung, breast, prostate and colon cancer.

The findings, which researchers say could form the basis for a new early detection screen for certain cancers, are published today in the online journal Public Library of Science Medicine.

The expression of genes that inhibit cancer development, so-called tumor suppressor genes, is often lost in tumor cells. This can occur through a mutation in the gene's DNA sequence or through deletion of the gene. Loss of tumor suppression function also can occur in a process called methylation, where a chemical called a methyl group is attached to a DNA region near the gene and prevents it from being activated, essentially "silencing" the gene.

"These results show the power of studying tumors on a genome-wide basis, looking at many genes at the same time," said Dr. John Minna, the study's senior author and director of the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics and the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern.

... more about:
»Detection »Expression »Shames »breast »methylation

In an effort to identify new tumor-suppressor genes that might be important to lung and breast cancer development, the UT Southwestern team examined which genes are active in those kinds of tumors and compared them to gene expression profiles from normal lung epithelial cells. The researchers then examined the gene expression profiles of these various cell types before and after treatment with a drug that inhibits methylation.

The researchers identified approximately 130 genes that may be methylated and thus silenced in lung, breast, prostate and colon cancers. They analyzed 45 of these new genes in both normal and cancerous tissues from the same patients and found that many of the genes were methylated specifically in the tumor samples.

"We ended up with a large number of genes that are involved in the development of lung cancer that, despite years of work in the field, I had never connected to lung cancer before," said Dr. Minna.

Patient samples from UT Southwestern's new Harold C. Simmons Comprehensive Cancer Center tissue repository and previous results from study author Dr. David Euhus allowed the research team to quickly extend its findings to breast, prostate and colon cancer. A Hamon Center postdoctoral researcher and lead study author Dr. David Shames was instrumental in identifying the genes, Dr. Minna said.

"What would have normally taken us several years, David Shames was able to determine in less than a month," Dr. Minna said. "The new genes Dr. Shames discovered are now forming the basis for a new early detection screen that could be mounted against the most common human cancers."

The genes the researchers found to be methylated specifically in the tumor samples might control the conversion of normal cells into cancer cells, Dr. Minna said, but this possibility needs to be tested on a case-by-case basis.

Although it is known that gene expression patterns in tumors vary greatly from tissue to tissue, the researchers hope that the similarities of the methylation patterns found in this study might lead to a better approach to detect cancer early and help identify new promising therapeutic targets to treat some of the most prevalent cancers.

"The findings from our study suggest that it may be possible to develop a methylation profiling platform that could be used to screen patients for common solid tumors, while at the same time identify what type of tumor the patient may have," Dr. Shames said.

The study also illustrates that some of the basic processes that underlie the development of breast and lung cancer are identical, even though the chemicals that initiate those processes – estrogen and tobacco carcinogens, for example – may be different, said Dr. Euhus, associate professor of surgical oncology.

"I was also struck that some of these processes could be detected in benign breast cells from high-risk women, more so than in lower-risk women," said Dr. Euhus, co-director of the Mary L. Brown Breast Cancer Genetics and Risk Assessment Program. "Methylation is potentially a reversible change and there may be some interventions that would effectively reduce the risk of several types of cancer simultaneously."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Detection Expression Shames breast methylation

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>