Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling of cancer genes may lead to better and earlier detection

27.12.2006
A research team at UT Southwestern Medical Center has for the first time identified several genes whose expression is lost in four of the most common solid human cancers – lung, breast, prostate and colon cancer.

The findings, which researchers say could form the basis for a new early detection screen for certain cancers, are published today in the online journal Public Library of Science Medicine.

The expression of genes that inhibit cancer development, so-called tumor suppressor genes, is often lost in tumor cells. This can occur through a mutation in the gene's DNA sequence or through deletion of the gene. Loss of tumor suppression function also can occur in a process called methylation, where a chemical called a methyl group is attached to a DNA region near the gene and prevents it from being activated, essentially "silencing" the gene.

"These results show the power of studying tumors on a genome-wide basis, looking at many genes at the same time," said Dr. John Minna, the study's senior author and director of the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics and the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern.

... more about:
»Detection »Expression »Shames »breast »methylation

In an effort to identify new tumor-suppressor genes that might be important to lung and breast cancer development, the UT Southwestern team examined which genes are active in those kinds of tumors and compared them to gene expression profiles from normal lung epithelial cells. The researchers then examined the gene expression profiles of these various cell types before and after treatment with a drug that inhibits methylation.

The researchers identified approximately 130 genes that may be methylated and thus silenced in lung, breast, prostate and colon cancers. They analyzed 45 of these new genes in both normal and cancerous tissues from the same patients and found that many of the genes were methylated specifically in the tumor samples.

"We ended up with a large number of genes that are involved in the development of lung cancer that, despite years of work in the field, I had never connected to lung cancer before," said Dr. Minna.

Patient samples from UT Southwestern's new Harold C. Simmons Comprehensive Cancer Center tissue repository and previous results from study author Dr. David Euhus allowed the research team to quickly extend its findings to breast, prostate and colon cancer. A Hamon Center postdoctoral researcher and lead study author Dr. David Shames was instrumental in identifying the genes, Dr. Minna said.

"What would have normally taken us several years, David Shames was able to determine in less than a month," Dr. Minna said. "The new genes Dr. Shames discovered are now forming the basis for a new early detection screen that could be mounted against the most common human cancers."

The genes the researchers found to be methylated specifically in the tumor samples might control the conversion of normal cells into cancer cells, Dr. Minna said, but this possibility needs to be tested on a case-by-case basis.

Although it is known that gene expression patterns in tumors vary greatly from tissue to tissue, the researchers hope that the similarities of the methylation patterns found in this study might lead to a better approach to detect cancer early and help identify new promising therapeutic targets to treat some of the most prevalent cancers.

"The findings from our study suggest that it may be possible to develop a methylation profiling platform that could be used to screen patients for common solid tumors, while at the same time identify what type of tumor the patient may have," Dr. Shames said.

The study also illustrates that some of the basic processes that underlie the development of breast and lung cancer are identical, even though the chemicals that initiate those processes – estrogen and tobacco carcinogens, for example – may be different, said Dr. Euhus, associate professor of surgical oncology.

"I was also struck that some of these processes could be detected in benign breast cells from high-risk women, more so than in lower-risk women," said Dr. Euhus, co-director of the Mary L. Brown Breast Cancer Genetics and Risk Assessment Program. "Methylation is potentially a reversible change and there may be some interventions that would effectively reduce the risk of several types of cancer simultaneously."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Detection Expression Shames breast methylation

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>