Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Activity Deciphered in the Aging Brain

20.12.2006
Neurobiologists have discovered why the aging brain produces progressively fewer new nerve cells in its learning and memory center. The scientists said the finding, made in rodents, refutes current ideas on how long crucial "progenitor" stem cells persist in the aging brain.

The finding also suggests the possibility of treating various neurodegenerative disorders, including Alzheimer's disease, dementia and depression, by stimulating the brain's ability to produce new nerve cells, said senior study investigator Ashok K. Shetty, Ph.D., professor of neurosurgery at Duke University Medical Center and medical research scientist at Durham VA Medical Center.

Results of the study appear online in the journal Neurobiology of Aging. The research was funded by the National Institutes of Health and the U.S. Department of Veterans Affairs.

Previous studies by Shetty and others had demonstrated that as the brain ages, fewer new nerve cells, or neurons, are born in the hippocampus, the brain's learning and memory center. In one study, Shetty and colleagues showed that the production of new neurons in rats slows down dramatically by middle age -- the equivalent of 50 years in humans.

... more about:
»Hippocampus »Shetty »neurons »stem cells

But scientists did not know what causes this decline.

The common assumption had been that the brain drain was due to a decreasing supply of neural stem cells in the aging hippocampus, said lead study investigator Bharathi Hattiangady, Ph.D., research associate in neurosurgery. Neural stem cells are immature cells that have the ability to give rise to all types of nerve cells in the brain.

In the current study, however, the researchers found that the stem cells in aging brains are not reduced in number, but instead they divide less frequently, resulting in dramatic reductions in the addition of new neurons in the hippocampus.

To conduct their census, the researchers attached easy-to-spot fluorescent tags to the neuronal stem cells in the hippocampus in young, middle-aged and old rats.

They found that in young rats, the hippocampus contained 50,000 stem cells -- and, significantly, this number did not diminish with aging. This finding, the researchers said, suggested that the decreased production of new neurons in the aged brain was not due to a lack of starting material.

The researchers then used another fluorescent molecule to tag all stem cells that were undergoing division in the process of staying "fresh" in case they were recruited to become mature nerve cells.

They found that in young rats, approximately 25 percent of the neural stem cells were actively dividing, but only 8 percent of the cells in middle-aged rats and 4 percent in old rats were dividing. This decreased division of stem cells is what causes the decreased neurogenesis, or birth of nerve cells, seen with aging, the scientists said.

"This discovery provides a new avenue to pursue in trying to combat the cognitive decline associated with conditions such as Alzheimer's disease and with aging in general," Hattiangady said.

The team now is searching for ways to stimulate the brain to replace its own cells in order to improve learning and memory function in the elderly.

One approach being explored is to treat older rats with drugs designed to mimic the action of compounds called neurogenic factors, which encourage stem cells in the brain to divide, Shetty said. The researchers also are grafting neural stem cells grown in culture dishes into the hippocampus, to stimulate those already present. Additional approaches include using behavioral modification techniques, such as physical exercise and exposure to an enriching environment, that are known to stimulate proliferation of stem cells.

Marla Vacek Broadfoot | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Hippocampus Shetty neurons stem cells

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>