Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cells get a grip

In real estate, it’s location, location, location. In stem cells, it’s niche, niche, niche.

Stems cells are regulated by "intrinsic factors" but it’s also becoming increasingly clear that their "stemness" depends on the unique microenvironment called the stem cell niche.

No adult or somatic stem cells have a more complex niche life than hematopoietic stem cells, which give rise to all the different types of blood and immune cells. The bone marrow is their niche. It’s a crowded neighborhood, teeming with different cell types such as fibroblasts, adipocytes, macrophages, and endothelial cells. Hematopoietic stem cells also share their bone marrow niche with osteoblasts, the body’s bone-forming cells, which are derived from a different stem cell population called bone marrow stromal cells. The two stem cells lines probably have a common progenitor but for now scientists can only regard hematopoietic stem cells and osteoblasts as niche neighbors. But it’s a very close relationship, as researchers in the National Institute of Child Health & Human Development laboratory of Jennifer Lippincott-Schwartz now reveal in great detail.

Earlier reports had established that osteoblasts are a crucial component of the hematopoietic stem cell niche and that physical contact with osteoblasts was vital for their survival. The Lippincott-Schwartz lab used live cell imaging techniques to see what happens when the two cell types are put together, directing their attention in particular at the point of cell-cell contact, and how it affects the cellular and molecular relationship of the two cell types.

The NIH researchers observed dynamic amoeboid motility toward the osteoblasts by both human CD34+ hematopoietic progenitor cells and KG1 cells, which are a hematopoietic subset of myeloid progenitors. The progenitor cells assumed a polarized morphology with a leading edge structure and a foot-like "special domain" projection from the cell’s trailing edge called a uropod. It was through this foot that the hematopoietic stem cells took hold of the osteoblasts. The uropod contact point was enriched in the cholera toxin B subunit, a lipid raft molecule, as well as the stem cell marker CD133.

The researchers had seeded the outside of the progenitor cells with microscopic markers, quantum dot nanocrystals, and watched as the dots were taken into the cells and delivered specifically to the uropod domain at the point of contact. Interestingly, time-lapse microscopy detected transfer of the quantum dots from the progenitor cells to the osteoblastic cells, suggesting an intercellular transfer of cell-associated molecules. Immune cells are known to transfer cell-surface molecules during cell-cell interactions so a similar intercellular transfer between hematopoietic progenitors and osteoblasts could be of broad biological significance, the researchers say. Further studies will explore how these close neighbors pull together in the hematopoietic niche.

John Fleischman | EurekAlert!
Further information:

Further reports about: hematopoietic niche osteoblasts progenitor progenitor cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>