Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells get a grip

18.12.2006
In real estate, it’s location, location, location. In stem cells, it’s niche, niche, niche.

Stems cells are regulated by "intrinsic factors" but it’s also becoming increasingly clear that their "stemness" depends on the unique microenvironment called the stem cell niche.

No adult or somatic stem cells have a more complex niche life than hematopoietic stem cells, which give rise to all the different types of blood and immune cells. The bone marrow is their niche. It’s a crowded neighborhood, teeming with different cell types such as fibroblasts, adipocytes, macrophages, and endothelial cells. Hematopoietic stem cells also share their bone marrow niche with osteoblasts, the body’s bone-forming cells, which are derived from a different stem cell population called bone marrow stromal cells. The two stem cells lines probably have a common progenitor but for now scientists can only regard hematopoietic stem cells and osteoblasts as niche neighbors. But it’s a very close relationship, as researchers in the National Institute of Child Health & Human Development laboratory of Jennifer Lippincott-Schwartz now reveal in great detail.

Earlier reports had established that osteoblasts are a crucial component of the hematopoietic stem cell niche and that physical contact with osteoblasts was vital for their survival. The Lippincott-Schwartz lab used live cell imaging techniques to see what happens when the two cell types are put together, directing their attention in particular at the point of cell-cell contact, and how it affects the cellular and molecular relationship of the two cell types.

The NIH researchers observed dynamic amoeboid motility toward the osteoblasts by both human CD34+ hematopoietic progenitor cells and KG1 cells, which are a hematopoietic subset of myeloid progenitors. The progenitor cells assumed a polarized morphology with a leading edge structure and a foot-like "special domain" projection from the cell’s trailing edge called a uropod. It was through this foot that the hematopoietic stem cells took hold of the osteoblasts. The uropod contact point was enriched in the cholera toxin B subunit, a lipid raft molecule, as well as the stem cell marker CD133.

The researchers had seeded the outside of the progenitor cells with microscopic markers, quantum dot nanocrystals, and watched as the dots were taken into the cells and delivered specifically to the uropod domain at the point of contact. Interestingly, time-lapse microscopy detected transfer of the quantum dots from the progenitor cells to the osteoblastic cells, suggesting an intercellular transfer of cell-associated molecules. Immune cells are known to transfer cell-surface molecules during cell-cell interactions so a similar intercellular transfer between hematopoietic progenitors and osteoblasts could be of broad biological significance, the researchers say. Further studies will explore how these close neighbors pull together in the hematopoietic niche.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: hematopoietic niche osteoblasts progenitor progenitor cells

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>