Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells get a grip

18.12.2006
In real estate, it’s location, location, location. In stem cells, it’s niche, niche, niche.

Stems cells are regulated by "intrinsic factors" but it’s also becoming increasingly clear that their "stemness" depends on the unique microenvironment called the stem cell niche.

No adult or somatic stem cells have a more complex niche life than hematopoietic stem cells, which give rise to all the different types of blood and immune cells. The bone marrow is their niche. It’s a crowded neighborhood, teeming with different cell types such as fibroblasts, adipocytes, macrophages, and endothelial cells. Hematopoietic stem cells also share their bone marrow niche with osteoblasts, the body’s bone-forming cells, which are derived from a different stem cell population called bone marrow stromal cells. The two stem cells lines probably have a common progenitor but for now scientists can only regard hematopoietic stem cells and osteoblasts as niche neighbors. But it’s a very close relationship, as researchers in the National Institute of Child Health & Human Development laboratory of Jennifer Lippincott-Schwartz now reveal in great detail.

Earlier reports had established that osteoblasts are a crucial component of the hematopoietic stem cell niche and that physical contact with osteoblasts was vital for their survival. The Lippincott-Schwartz lab used live cell imaging techniques to see what happens when the two cell types are put together, directing their attention in particular at the point of cell-cell contact, and how it affects the cellular and molecular relationship of the two cell types.

The NIH researchers observed dynamic amoeboid motility toward the osteoblasts by both human CD34+ hematopoietic progenitor cells and KG1 cells, which are a hematopoietic subset of myeloid progenitors. The progenitor cells assumed a polarized morphology with a leading edge structure and a foot-like "special domain" projection from the cell’s trailing edge called a uropod. It was through this foot that the hematopoietic stem cells took hold of the osteoblasts. The uropod contact point was enriched in the cholera toxin B subunit, a lipid raft molecule, as well as the stem cell marker CD133.

The researchers had seeded the outside of the progenitor cells with microscopic markers, quantum dot nanocrystals, and watched as the dots were taken into the cells and delivered specifically to the uropod domain at the point of contact. Interestingly, time-lapse microscopy detected transfer of the quantum dots from the progenitor cells to the osteoblastic cells, suggesting an intercellular transfer of cell-associated molecules. Immune cells are known to transfer cell-surface molecules during cell-cell interactions so a similar intercellular transfer between hematopoietic progenitors and osteoblasts could be of broad biological significance, the researchers say. Further studies will explore how these close neighbors pull together in the hematopoietic niche.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: hematopoietic niche osteoblasts progenitor progenitor cells

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>