Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identified new genetic markers for high-risk cases of breast cancer

18.12.2006
Researchers have found that small changes in the DNA sequence of genes involved in DNA repair are associated with different breast cancer susceptibilities in women, suggesting that these differences could be used as genetic markers for higher risk cases.

Released as an advance online publication in the “Breast Cancer Research and Treatment” journal, the work can help, not only in the early detection and treatment of the disease, but also gives a better understanding of the mechanisms behind it.

DNA repair genes, as the name indicates, repair damaged DNA in a process crucial for cancer prevention. In fact, all over the body genetic mutations are constantly occurring and being fixed through several DNA repair mechanisms and so avoid the accumulation of harmful mutations that can ultimately lead to cancer. As consequence it has been suggested that problems in the body’s DNA repair mechanisms/genes can facilitate the development of cancer.

Following this idea, Sandra Costa, Fernando Schmitt and colleagues in Portugal and Spain, decided to test if it was possible to correlate different forms of four major DNA repair genes existent in the human population to different susceptibilities to breast cancer. In fact, different individuals can present small differences in the DNA sequence of a gene, as it happens, for example, with the gene for eye colour where the variations give origin to the different colours. These different DNA sequences appear as result of mutations and are called genetic polymorphisms.

... more about:
»DNA »DNA repair »Polymorphism »XRCC1 »XRCC3 »breast cancer

For this study Costa, Schmitt and colleagues analysed 285 breast cancer patients and 442 healthy controls looking at several genetic polymorphisms in four major DNA repair genes - XRCC1, XPD, RAD51 and XRCC3 - and their relationship with breast cancer incidence.

It was found that women carrying the genetic polymorphism XRCC1 399Gln and who had no family history of breast cancer, had not only less disease than healthy controls, but it was also found that disease, when it occurred, started later in life. This result suggested that XRCC1 399Gln had a protective effect against breast cancer.

On the opposite side of the spectrum, a genetic polymorphism in the XRCC3 gene - XRCC3 241Met - increased susceptibility to the disease and accelerated disease onset. Again this was only observed in women without a family history of breast cancer.

Finally, the team of researchers found that the polymorphism RAD51 135C increased the risk of breast cancer, this time in the group of women that belonged to families with previous cases of the disease. Variations in the fourth gene studied – XPD – did not show any effect in the incidence of breast cancer at least among the groups and the polymorphisms analysed in this work

Breast cancer is the most common type of cancer and the second leading cause of cancer death among women. According to the World Health Organization every year more than 1 million of people will be diagnosed worldwide with the disease, while 1 in 8 women will develop it during their lifetime. Nevertheless, nowadays, a diagnostic of breast cancer has a relatively good prognosis much due to the development of disease awareness and frequent screenings among women - especially those belonging to higher risk groups - allowing earlier detection (and treatment) of the disease

The work by Costa, Schmitt and colleagues, by suggesting that XRCC1 Arg399Gln, XRCC3 Thr241Met and RAD51 G135C can be used as markers for different cancer susceptibilities, helps not only to elucidate the mechanisms behind disease, but can be also crucial in the early identification of those high risk cases. These are interesting results for breast cancer, which by being the result of a complex interaction of inherited as well as environmental factors is still far from being understood and/or controlled.

Piece researched and written by: Catarina Amorim
(catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.springerlink.com/content/2848708327416806/
http://www.linacre.ox.ac.uk

Further reports about: DNA DNA repair Polymorphism XRCC1 XRCC3 breast cancer

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>