Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality not quantity important for immune response to HIV

18.12.2006
When it comes to an immune response against HIV, research funded by the Wellcome Trust in the UK and the National Institutes of Health in the US has found that bigger is not necessarily better, contrary to conventional medical wisdom. The research may have a profound impact on the development of a vaccine against the disease.

"Conventional medical wisdom tells us that the bigger the immune response, the more effective it will be in controlling HIV," says Professor Philip Goulder, a Wellcome Trust Senior Research Fellow in Clinical Science at the University of Oxford. "However, our study suggests that this might not be the case. While most of the immune responses generated against HIV appear to be ineffective, responses targeting one particular HIV protein can bring about control of the virus."

About 40 million people are thought to be living with HIV worldwide. The virus, which causes AIDS, is thought to kill 3 million people each year. Despite being first identified in 1981, a vaccine to prevent infection has so far proved elusive.

When HIV infects the body, it hides out in so-called "helper T-cells". T cells play an important role in the immune response generated by the body to fight infection. There are a number of different types of T cells, each playing a different role in this battle. Helper T-cells (HTCs) regulate the body's immune response and it is the loss of these cells that leads to the development of AIDS.

... more about:
»CTC »Goulder »HIV »immune

Another type of T cell, the cytotoxic T cell (CTC), recognises and attacks infected HTCs. It was previously thought that the bigger the CTC response, the more effective it would be. It is this dogma that has influenced development of HIV vaccines, with the vaccines attempting to stimulate a large response.

However, Professor Goulder and colleagues found that the type of CTC response is crucial and that some types of response may have a negative effect and could actually hinder the immune response. The research, a population-based study involving investigators at the University of Oxford in the UK, Partners AIDS Research Center at Massachusetts General Hospital in the US and the University of KwaZulu-Natal, South Africa, investigated the immune responses against HIV in nearly 580 HIV-infected people in KwaZulu-Natal. It is published online today in the journal Nature Medicine.

"Some of the CTCs attack so-called 'Gag' proteins within the HIV virus, whilst others attack proteins such as the 'Env' protein on its surface," explains Professor Goulder. "In our study group, it seems that the higher the response to the Gag proteins, the more effective the immune system was at fighting infection. However, for reasons that are unclear, the opposite was true for responses to the Env proteins, where a stronger response was associated with a higher viral load – in other words, worse control of HIV."

Professor Goulder believes these findings may have implications for the development of a HIV vaccine.

"There seems to be clear evidence that 'Gag is good'," says Professor Goulder. "This means that rather than developing a vaccine with a spectrum of CTC responses, we may need to look at a more targeted vaccine."

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: CTC Goulder HIV immune

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>