Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembling nano-ice discovered at UNL; structure resembles DNA

14.12.2006
Working at the frontier between chemistry and physics, the University of Nebraska-Lincoln's Xiao Cheng Zeng usually finds his reward in discovering the unexpected through computer modeling.

Zeng and his colleagues regularly find new and often unanticipated behaviors of matter in extreme environments, and those discoveries have been published several times in major international scientific journals. Their findings, though, have been so far ahead of existing technology that their immediate practical impact was essentially nil -- until now.

Zeng and two members of his UNL team recently found double helixes of ice molecules that resemble the structure of DNA and self-assemble under high pressure inside carbon nanotubes. This discovery could have major implications for scientists in other fields who study the protein structures that cause diseases such as Alzheimer's and bovine spongiform ecephalitis (mad cow disease). It could also help guide those searching for ways to target or direct self-assembly in nanomaterials and predict the kind of ice future astronauts will find on Mars and moons in the solar system.

Zeng, post-doctoral student Jaeil Bai and doctoral candidate Jun Wang reported their findings in the Dec. 11-15 online edition of the Proceedings of the National Academy of Sciences.

... more about:
»Bai »Carbon »DNA »Helix »Simulation »Zeng »nano-ice »self-assembly

Zeng and his colleagues use powerful computers to model how materials behave at the nanoscale (where measurements are made in billionths of meters) under extremes of temperature, pressure and confinement. The team found the self-assembling double helix of nano-ice following a months-long experiment on UNL's PrairieFire supercomputer.

The experiment was a follow-up on a 2001 discovery through computer modeling by Zeng and another team of four new kinds of one-dimensional ice inside carbon nanotubes. Scientists elsewhere later confirmed through laboratory experiment the existence of three of the new nano-ices. One result in particular intrigued Zeng, Bai and Wang. Scientists at Argonne National Laboratory near Chicago confirmed the existence of a chain of octagon-shaped ice crystals inside a 1.4-nanometer carbon tube, just as Zeng and company expected. But the Argonne group also found an additional, unexpected chain of water molecules inside the octagon.

Zeng said that report inspired his team to take another look at one-dimensional ice, but this time with a PrairieFire that was 20 times more powerful that it had been five years earlier. The 2001 results were achieved at atmospheric pressures, but PrairieFire's added processing power enabled Zeng, Bai and Wang to design simulations that greatly increased the pressure on the water molecules.

"We were shocked to see these molecules arrange themselves in this way," said Zeng, university professor of chemistry. "We thought it would be like two tubes, one inside the other, but it didn't do that. It was helical, like DNA. I'm just speculating, but maybe the helix is a way for molecules to arrange themselves in a very compact, efficient way under high pressure.

"This ice formation can be viewed as a self-assembling process, and self-assembly is a way for molecules to bond together through weak hydrogen bonds. One example of a self-assembling material is protein. Proteins can self-assemble into structures like amyloid fibrils that can build up in the brain to cause Alzheimer's disease or prions that cause mad cow disease."

Another implication, Zeng said, is that these self-assembling helical ice structures may give scientists and engineers a different way to think about weak molecular bonds and the self-assembly process as they try to develop ways to direct self-assembly in making new materials. He said that while scientists have a good understanding of covalent bonds (the strong type of bonding where atoms share electrons), knowledge is not as complete about the weak bond, such as hydrogen bonds, that are essential to the self-assembly process. In weak bonding, atoms don't share electrons.

"We're happy to see potential applications that can maybe advance some fundamental science," Zeng said. "We're not engineers in direct contact with technology, but if our research can make some contribution, we're happy."

Zeng and his colleagues achieved their results by running four series of molecular dynamics simulations on PrairieFire and Department of Chemistry computers, using simulated carbon nanotubes ranging in diameter from 1.35 to 1.9 nanometers. They used Earth-like temperatures ranging from 117 degrees Fahrenheit to 9 degrees below zero F., but with pressures ranging from 10 to 40,000 atmospheres, with each series lasting no more than a few 10s of nanoseconds.

Most of the experiments produced the expected tubular structures, but in a simulation in a 1.35-nanometer tube at minus-9 degrees F. and 40,000 atmospheres, the ice transformed into a braid of double helix that resembles DNA in structure and in the weak bonds between the helixes. Additionally, in a simulation in a 1.9-nanometer tube at the same temperature, pressure on the confined liquid water was instantly raised from 10 atmospheres to 8,000. The confined liquid froze spontaneously into a high-density, triple-walled helical structure.

This research was funded by the Department of Energy, the National Science Foundation, the Nebraska Research Initiative and the John Simon Guggenheim Foundation.

The links below are to color JPEGs of a computer image of of the nano-ice double helix and of Zeng and his team. In the nano-ice image, oxygen atoms are blue in the inner helix, purple in the outer helix. Hydrogen atoms are white. The individuals in the photograph, left-to-right, are Wang, Zeng and Bai.

CONTACTS: Xiao Cheng Zeng, University Professor, Chemistry, (402) 472-9894
Tom Simons, University Communications, (402) 472-8514

Kelly Bartling | EurekAlert!
Further information:
http://www.unl.edu

Further reports about: Bai Carbon DNA Helix Simulation Zeng nano-ice self-assembly

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>