Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea urchin genome suprisingly similar to man and may hold key to cures

11.12.2006
Sea urchins are small and spiny, they have no eyes and they eat kelp and algae. Still, the sea creature’s genome is remarkably similar to humans’ and may hold the key to preventing and curing several human diseases, according to a University of Central Florida researcher and several colleagues.

UCF Professor Cristina Calestani was part of the Sea Urchin Genome Sequencing Group, which recently completed sequencing of the sea urchin genome and published its findings in the November issue of Science. The National Institutes of Health funded most of the nine-month project.

The genome of the purple sea urchin is composed by 814 "letters" coding for 23,300 genes.

Sea urchins are echinoderms, marine animals that originated more than 540 million years ago. The reason for the great interest in sequencing the sea urchin genome is because it shares a common ancestor with humans. Sea urchins are closer to human and vertebrates from an evolutionary perspective than other more widely studied animal models, such as fruit fly or worms. The purple sea urchin, in fact, has 7,000 genes in common with humans, including genes associated with Parkinson’s, Alzheimer’s and Huntington’s diseases and muscular dystrophy.

... more about:
»Calestani »Development »Genome »UCF »Urchin

"Another surprise is that this spiny creature with no eyes, nose or hears has genes involved in vision, hearing and smell in humans," Calestani said. "The comparison of human genes with their corresponding ancestral sea urchin genes may give important insight on their function in humans, in the same way the study of history helps understanding the reality of our modern world."

The genome sequencing project was led by Erica Sodergren and George Weinstock at the Baylor College of Medicine-Human Genome Sequencing Center in Houston, along with Dr. Richard Gibbs, director of the Baylor center, and Drs. Eric Davidson and Andrew Cameron at the California Institute of Technology.

Of particular interest to Calestani is the way the sea urchin’s immune system works. The human immune system has two components: innate immunity, with which we are born, and acquired immunity, which is the ability to produce antibodies in response to an infection. Sea urchins only have innate immunity, and it is greatly expanded with 10 to 20 times as many genes as in human.

"Considering that sea urchins have a long life span -- some can live up to 100 years -- their immune system must be powerful," Calestani said. "Sea urchins could very well provide a new set of antibiotic and antiviral compounds to fight various infectious diseases."

The sea urchin has been used for many years as a research model to study embryonic development.

Cell development is very complicated. In order to properly regulate just one gene expression of a single-cell layered gut of the sea urchin larva, at least 14 proteins binding the DNA at 50 sites are needed, Calestani said.

"Multiply that hundreds of times and you begin to understand the level of complexity involved in human development," she added.

Using a "simple" creature like the sea urchin embryo to uncover the molecular basis underlying development offers several experimental advantages compared to the use of mice. Raising sea urchin embryos is easy and inexpensive. One female can provide up to 20 millions eggs. The embryos develop in just three days and are transparent. Also, single cells can be easily observed live in the embryos.

"If we know how these biological processes work, then we can begin to figure out how to intercede to repair and to heal," Calestani said. "It holds a lot of promise."

Calestani is continuing her work with sea urchins at UCF in Orlando by examining the development of pigment cells found in the marine creatures. Those cells also might provide some insight into human immunity to diseases.

Calestani, who teaches genetics at UCF, worked with Davidson at Caltech before arriving at UCF.

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

Further reports about: Calestani Development Genome UCF Urchin

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>