Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea urchin genome suprisingly similar to man and may hold key to cures

11.12.2006
Sea urchins are small and spiny, they have no eyes and they eat kelp and algae. Still, the sea creature’s genome is remarkably similar to humans’ and may hold the key to preventing and curing several human diseases, according to a University of Central Florida researcher and several colleagues.

UCF Professor Cristina Calestani was part of the Sea Urchin Genome Sequencing Group, which recently completed sequencing of the sea urchin genome and published its findings in the November issue of Science. The National Institutes of Health funded most of the nine-month project.

The genome of the purple sea urchin is composed by 814 "letters" coding for 23,300 genes.

Sea urchins are echinoderms, marine animals that originated more than 540 million years ago. The reason for the great interest in sequencing the sea urchin genome is because it shares a common ancestor with humans. Sea urchins are closer to human and vertebrates from an evolutionary perspective than other more widely studied animal models, such as fruit fly or worms. The purple sea urchin, in fact, has 7,000 genes in common with humans, including genes associated with Parkinson’s, Alzheimer’s and Huntington’s diseases and muscular dystrophy.

... more about:
»Calestani »Development »Genome »UCF »Urchin

"Another surprise is that this spiny creature with no eyes, nose or hears has genes involved in vision, hearing and smell in humans," Calestani said. "The comparison of human genes with their corresponding ancestral sea urchin genes may give important insight on their function in humans, in the same way the study of history helps understanding the reality of our modern world."

The genome sequencing project was led by Erica Sodergren and George Weinstock at the Baylor College of Medicine-Human Genome Sequencing Center in Houston, along with Dr. Richard Gibbs, director of the Baylor center, and Drs. Eric Davidson and Andrew Cameron at the California Institute of Technology.

Of particular interest to Calestani is the way the sea urchin’s immune system works. The human immune system has two components: innate immunity, with which we are born, and acquired immunity, which is the ability to produce antibodies in response to an infection. Sea urchins only have innate immunity, and it is greatly expanded with 10 to 20 times as many genes as in human.

"Considering that sea urchins have a long life span -- some can live up to 100 years -- their immune system must be powerful," Calestani said. "Sea urchins could very well provide a new set of antibiotic and antiviral compounds to fight various infectious diseases."

The sea urchin has been used for many years as a research model to study embryonic development.

Cell development is very complicated. In order to properly regulate just one gene expression of a single-cell layered gut of the sea urchin larva, at least 14 proteins binding the DNA at 50 sites are needed, Calestani said.

"Multiply that hundreds of times and you begin to understand the level of complexity involved in human development," she added.

Using a "simple" creature like the sea urchin embryo to uncover the molecular basis underlying development offers several experimental advantages compared to the use of mice. Raising sea urchin embryos is easy and inexpensive. One female can provide up to 20 millions eggs. The embryos develop in just three days and are transparent. Also, single cells can be easily observed live in the embryos.

"If we know how these biological processes work, then we can begin to figure out how to intercede to repair and to heal," Calestani said. "It holds a lot of promise."

Calestani is continuing her work with sea urchins at UCF in Orlando by examining the development of pigment cells found in the marine creatures. Those cells also might provide some insight into human immunity to diseases.

Calestani, who teaches genetics at UCF, worked with Davidson at Caltech before arriving at UCF.

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

Further reports about: Calestani Development Genome UCF Urchin

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>