Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NYU chemists create 'nanorobotic' arm to operate within DNA sequence

New York University chemistry professor Nadrian C. Seeman and his graduate student Baoquan Ding have developed a DNA cassette through which a nanomechanical device can be inserted and function within a DNA array, allowing for the motion of a nanorobotic arm.

The results, reported in the latest issue of the journal Science, mark the first time scientists have been able to employ a functional nanotechnology device within a DNA array.

“It is crucial for nanorobotics to be able to insert controllable devices into a particular site within an array, thereby leading to a diversity of structural states,” explained Seeman. “Here we have demonstrated that a single device has been inserted and converted at a specific site.”

He added that the results pave the way for creating nanoscale “assembly lines” in which more complex maneuvers could be executed.

... more about:
»Array »DNA sequence »NYU »Seeman

The results are based upon a device Seeman and his NYU colleagues had previously developed. That component has enabled the translation of DNA sequences, thereby potentially serving as a factory for assembling the building blocks of new materials. The invention has the potential to develop new synthetic fibers, advance the encryption of information, and improve DNA-based computation. The device, developed with NYU Chemistry graduate student Shiping Liao, emulates the process by which RNA replicas of DNA sequences are translated to create protein sequences. However, the signals that control the nanomechanical tool are DNA rather than RNA. The dimensions of the machine are approximately 110 x 30 x 2 nm.

In this study, Seeman and Ding developed a framework that contains a binding site--a cassette—that allows insertion of the device into a specific site of a DNA array. Changing the cassette’s control sequences or insertion sequences would allow the researchers to manipulate the array or insert it at different locations. The researchers added a long arm to the framework so that they could observe the structure undergoing a half-rotation. They visualized their results by atomic force microscopy (AFM), which permits features that are a few billionths of a meter to be visualized.

James Devitt | EurekAlert!
Further information:

Further reports about: Array DNA sequence NYU Seeman

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>