Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tearing down the fungal cell wall

06.12.2006
Fungal gene impacts viability of destructive pathogen

Scientists at the Virginia Bioinformatics Institute and Duke University Medical Center have pinpointed a fungal gene that appears to play an important role in the development and virulence of Alternaria brassicicola. A. brassicicola, a destructive fungal pathogen that causes black spot disease on most cultivated Brassica crops worldwide, results in considerable leaf loss in many economically important crops including canola, cabbage and broccoli. Sensitivity to spores of Alternaria species is also clinically associated with human respiratory disorders such as allergy, asthma, and chronic sinusitis.

Spores, which are often termed conidia in some fungi, are an essential part of the developmental cycle of A. brassicicola and arise from the branching filaments or hyphae that make up the fungus. In the study, the investigators show that disruption of the AbNPS2 gene drastically impacts the integrity of the cell wall of fungal spores produced in the reproductive phase of A. brassicicola's life cycle. The AbNPS2 gene most likely directs the synthesis of a molecule that plays an essential role in maintaining the structure of the cell wall of the conidia.

Associate Professor Christopher Lawrence of the Virginia Bioinformatics Institute and the Department of Biological Sciences at Virginia Tech, director of the study, remarked: "Typical A. brassicicola spores are hydrophobic. Water droplets placed on a lawn of fungal hyphae bearing normal spores are repelled and easily roll off the surface. When the AbNPS2 gene is disrupted, the linkage of the outermost layer of the fungal spore cell wall to the middle layer appears to be disturbed, destroying the cell wall's regular architecture and making the spores permeable to water. This has drastic effects on the viability of the spores."

Kwang-Hyung Kim, doctoral student and the lead author on the paper, stated: "What we have been able to show is that mutation of the AbNPS2 gene is accompanied by structural changes that occur in the cell wall of the spores, a decrease in spore germination rate, lower survival rates for the spores under adverse environmental conditions, and a reduced ability of the fungus to damage the host plant. These observations may open up a route to develop new and innovative research strategies aimed at understanding the host-pathogen interaction for this destructive plant pathogen."

The investigators used a wide range of experimental approaches to look in detail at the link between the function of the gene and its impact on the structure of the spore cell wall. A recently developed gene disruption method was used to generate the fungal mutants (See "New method enables gene disruption in destructive fungal pathogen" at www.vbi.vt.edu/article/articleview/538/1/15/). Bioinformatic and gene prediction tools were applied to probe the structure and organization of the AbNPS2 gene and the surrounding region in the recently sequenced A. brassicicola genome, a collaborative project nearing completion with Washington University Genome Sequencing Center in St. Louis. Electron microscopy revealed some of the dramatic structural changes in the cell wall arising from disruption of the gene.

Dr. Nancy Keller, Professor in the Department of Plant Pathology at the University of Wisconsin, Madison and international expert in fungal secondary metabolism, commented: "The finding that a non-ribosomal peptide synthetase is integral to conidial morphology further illustrates the versatile and essential role of these secondary metabolites in fungal biology. For years long ignored, the function of natural products is rapidly becoming one of the hot topics in fungal biology; the findings reported in this study by Dr. Lawrence's research group further underline their importance."

The AbNPS2 gene encodes a large protein known as a non-ribosomal peptide synthetase. This protein directs the synthesis of secondary metabolites known as non-ribosomal peptides. However, the functions of many of these proteins and the subsequent synthesized metabolites are largely unknown. Dr. Lawrence added: "To the best of our knowledge, this is the first report that a fungal non-ribosomal peptide synthetase is associated with cell wall construction in fungal spores. The putative secondary metabolite produced by the protein encoded by this gene could serve as a physical bridge in the layers of the cell wall or function as a regulator of cell wall biosynthesis. Future work will focus on identifying the role of the product of the AbNPS2 gene which should allow us to get an important handle on the precise series of molecular events that give rise to these drastic effects on spore viability."

Barry Whyte | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: AbNPS2 Bioinformatic Peptide brassicicola destructive fungal non-ribosomal

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>