Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tearing down the fungal cell wall

06.12.2006
Fungal gene impacts viability of destructive pathogen

Scientists at the Virginia Bioinformatics Institute and Duke University Medical Center have pinpointed a fungal gene that appears to play an important role in the development and virulence of Alternaria brassicicola. A. brassicicola, a destructive fungal pathogen that causes black spot disease on most cultivated Brassica crops worldwide, results in considerable leaf loss in many economically important crops including canola, cabbage and broccoli. Sensitivity to spores of Alternaria species is also clinically associated with human respiratory disorders such as allergy, asthma, and chronic sinusitis.

Spores, which are often termed conidia in some fungi, are an essential part of the developmental cycle of A. brassicicola and arise from the branching filaments or hyphae that make up the fungus. In the study, the investigators show that disruption of the AbNPS2 gene drastically impacts the integrity of the cell wall of fungal spores produced in the reproductive phase of A. brassicicola's life cycle. The AbNPS2 gene most likely directs the synthesis of a molecule that plays an essential role in maintaining the structure of the cell wall of the conidia.

Associate Professor Christopher Lawrence of the Virginia Bioinformatics Institute and the Department of Biological Sciences at Virginia Tech, director of the study, remarked: "Typical A. brassicicola spores are hydrophobic. Water droplets placed on a lawn of fungal hyphae bearing normal spores are repelled and easily roll off the surface. When the AbNPS2 gene is disrupted, the linkage of the outermost layer of the fungal spore cell wall to the middle layer appears to be disturbed, destroying the cell wall's regular architecture and making the spores permeable to water. This has drastic effects on the viability of the spores."

Kwang-Hyung Kim, doctoral student and the lead author on the paper, stated: "What we have been able to show is that mutation of the AbNPS2 gene is accompanied by structural changes that occur in the cell wall of the spores, a decrease in spore germination rate, lower survival rates for the spores under adverse environmental conditions, and a reduced ability of the fungus to damage the host plant. These observations may open up a route to develop new and innovative research strategies aimed at understanding the host-pathogen interaction for this destructive plant pathogen."

The investigators used a wide range of experimental approaches to look in detail at the link between the function of the gene and its impact on the structure of the spore cell wall. A recently developed gene disruption method was used to generate the fungal mutants (See "New method enables gene disruption in destructive fungal pathogen" at www.vbi.vt.edu/article/articleview/538/1/15/). Bioinformatic and gene prediction tools were applied to probe the structure and organization of the AbNPS2 gene and the surrounding region in the recently sequenced A. brassicicola genome, a collaborative project nearing completion with Washington University Genome Sequencing Center in St. Louis. Electron microscopy revealed some of the dramatic structural changes in the cell wall arising from disruption of the gene.

Dr. Nancy Keller, Professor in the Department of Plant Pathology at the University of Wisconsin, Madison and international expert in fungal secondary metabolism, commented: "The finding that a non-ribosomal peptide synthetase is integral to conidial morphology further illustrates the versatile and essential role of these secondary metabolites in fungal biology. For years long ignored, the function of natural products is rapidly becoming one of the hot topics in fungal biology; the findings reported in this study by Dr. Lawrence's research group further underline their importance."

The AbNPS2 gene encodes a large protein known as a non-ribosomal peptide synthetase. This protein directs the synthesis of secondary metabolites known as non-ribosomal peptides. However, the functions of many of these proteins and the subsequent synthesized metabolites are largely unknown. Dr. Lawrence added: "To the best of our knowledge, this is the first report that a fungal non-ribosomal peptide synthetase is associated with cell wall construction in fungal spores. The putative secondary metabolite produced by the protein encoded by this gene could serve as a physical bridge in the layers of the cell wall or function as a regulator of cell wall biosynthesis. Future work will focus on identifying the role of the product of the AbNPS2 gene which should allow us to get an important handle on the precise series of molecular events that give rise to these drastic effects on spore viability."

Barry Whyte | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: AbNPS2 Bioinformatic Peptide brassicicola destructive fungal non-ribosomal

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>