Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tearing down the fungal cell wall

06.12.2006
Fungal gene impacts viability of destructive pathogen

Scientists at the Virginia Bioinformatics Institute and Duke University Medical Center have pinpointed a fungal gene that appears to play an important role in the development and virulence of Alternaria brassicicola. A. brassicicola, a destructive fungal pathogen that causes black spot disease on most cultivated Brassica crops worldwide, results in considerable leaf loss in many economically important crops including canola, cabbage and broccoli. Sensitivity to spores of Alternaria species is also clinically associated with human respiratory disorders such as allergy, asthma, and chronic sinusitis.

Spores, which are often termed conidia in some fungi, are an essential part of the developmental cycle of A. brassicicola and arise from the branching filaments or hyphae that make up the fungus. In the study, the investigators show that disruption of the AbNPS2 gene drastically impacts the integrity of the cell wall of fungal spores produced in the reproductive phase of A. brassicicola's life cycle. The AbNPS2 gene most likely directs the synthesis of a molecule that plays an essential role in maintaining the structure of the cell wall of the conidia.

Associate Professor Christopher Lawrence of the Virginia Bioinformatics Institute and the Department of Biological Sciences at Virginia Tech, director of the study, remarked: "Typical A. brassicicola spores are hydrophobic. Water droplets placed on a lawn of fungal hyphae bearing normal spores are repelled and easily roll off the surface. When the AbNPS2 gene is disrupted, the linkage of the outermost layer of the fungal spore cell wall to the middle layer appears to be disturbed, destroying the cell wall's regular architecture and making the spores permeable to water. This has drastic effects on the viability of the spores."

Kwang-Hyung Kim, doctoral student and the lead author on the paper, stated: "What we have been able to show is that mutation of the AbNPS2 gene is accompanied by structural changes that occur in the cell wall of the spores, a decrease in spore germination rate, lower survival rates for the spores under adverse environmental conditions, and a reduced ability of the fungus to damage the host plant. These observations may open up a route to develop new and innovative research strategies aimed at understanding the host-pathogen interaction for this destructive plant pathogen."

The investigators used a wide range of experimental approaches to look in detail at the link between the function of the gene and its impact on the structure of the spore cell wall. A recently developed gene disruption method was used to generate the fungal mutants (See "New method enables gene disruption in destructive fungal pathogen" at www.vbi.vt.edu/article/articleview/538/1/15/). Bioinformatic and gene prediction tools were applied to probe the structure and organization of the AbNPS2 gene and the surrounding region in the recently sequenced A. brassicicola genome, a collaborative project nearing completion with Washington University Genome Sequencing Center in St. Louis. Electron microscopy revealed some of the dramatic structural changes in the cell wall arising from disruption of the gene.

Dr. Nancy Keller, Professor in the Department of Plant Pathology at the University of Wisconsin, Madison and international expert in fungal secondary metabolism, commented: "The finding that a non-ribosomal peptide synthetase is integral to conidial morphology further illustrates the versatile and essential role of these secondary metabolites in fungal biology. For years long ignored, the function of natural products is rapidly becoming one of the hot topics in fungal biology; the findings reported in this study by Dr. Lawrence's research group further underline their importance."

The AbNPS2 gene encodes a large protein known as a non-ribosomal peptide synthetase. This protein directs the synthesis of secondary metabolites known as non-ribosomal peptides. However, the functions of many of these proteins and the subsequent synthesized metabolites are largely unknown. Dr. Lawrence added: "To the best of our knowledge, this is the first report that a fungal non-ribosomal peptide synthetase is associated with cell wall construction in fungal spores. The putative secondary metabolite produced by the protein encoded by this gene could serve as a physical bridge in the layers of the cell wall or function as a regulator of cell wall biosynthesis. Future work will focus on identifying the role of the product of the AbNPS2 gene which should allow us to get an important handle on the precise series of molecular events that give rise to these drastic effects on spore viability."

Barry Whyte | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: AbNPS2 Bioinformatic Peptide brassicicola destructive fungal non-ribosomal

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>