Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silica particle sparks life in protein

05.12.2006
Tiny formless particles in water solution take on a well-ordered and functional structure as soon as they come into contact with nanoparticles of silica.

A unique breakthrough by researchers at Linköping University in Sweden creates new potential in medicine and biochemistry and at the same time provides a new piece of the puzzle in theories about the origins of life.

Normally, inorganic materials like silica are unwelcome in biological systems, since they disrupt the form and function of proteins.

“We wanted to reverse the thinking and try to design proteins that take on their function only after encountering an inorganic surface,” says Bengt-Harald Jonsson, professor of molecular biotechnology.

... more about:
»Peptide »Protein »Silica »amino acid

He directs the research team that is now presenting its findings in Angewandte Chemie.

The team designed a peptide (a short protein) with a specific distribution of positive charges. The peptide was mixed into a solution of spherical silica particles, about 9 nanometers (billionths of a meter) across. When the peptide was free in the solution it had no structure whatsoever, but when it connected with the negatively charged silica ball it assumed the form of a helix. The result was a complex of a silica particle and a functional protein.

When the researchers added amino acids to their peptide, the complex took on the properties of a catalyst, a function similar to that of enzymes in living cells.

The method has several possible fields of application:

- recognition of organic molecules
- catalyzing of chemical reactions with precise control
- target-seeking particles for medical uses
But the Linköping University scientists’ successful experiment may also shed light on the eternal question of the origin of life. Particles of clay containing silica in the ‘primeval soup’ may have attracted unstructured peptides with amino acids attached and given rise to the first functional proteins.

“We know that RNA (which plays a decisive role in the transfer of information in cells) can bind with clay particles whose surfaces have negative charges. The probability of peptides with amino acids having formed well-defined structures with the clay at an early stage of development is considerably greater, since they are more diversified than RNA is,” says Bengt-Harald Jonsson.

Åke Hjelm | alfa
Further information:
http://www.liu.se
http://www3.interscience.wiley.com/cgi-bin/jissue/104540294

Further reports about: Peptide Protein Silica amino acid

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>