Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved

01.12.2006
Chemicals made Stradivarius violins unique, says professor

Answering a question that has lingered for centuries, a team of scientists has proved that chemicals used to treat the wood used in Stradivarius and Guarneri violins are the reasons for the distinct sound produced by the world-famous instruments.

The conclusions, published in the current issue of Nature magazine, have confirmed 30 years of work into the subject by Joseph Nagyvary, professor emeritus of biochemistry at Texas A&M University, who was the first to theorize that chemicals – not necessarily the wood – created the unique sound of the two violins. Nagyvary teamed with collaborators Joseph DiVerdi of Colorado State University and Noel Owen of Brigham Young University on the project.

“This research proves unquestionably that the wood of the great masters was subjected to an aggressive chemical treatment and the chemicals – most likely some sort of oxidizing agents – had a crucial role in creating the great sound of the Stradivarius and the Guarneri,” Nagyvary says.

... more about:
»Guarneri »Nagyvary »Stradivari »Stradivarius

“Like many discoveries, this one could have been accidental. Perhaps the violin makers were not even aware of the acoustical effects of the chemicals. Both Stradivari and Guarneri wanted to treat their violins to prevent worms from eating away the wood. They used some chemical agents to protect the wood from worm infestations of the time, and the unintended consequence from these chemicals was a sound like none other,” he adds.

The team tested several instruments, including violins and cellos, produced by Stradivari and Guarneri from 1717 to around 1741, using spectra analysis and other methods.

The results and those previously reported by Nagyvary showed that two specific areas of the instruments accounted for their unique sound – chemicals used in the varnish and fillers of the instruments, and the overall wood treatment process used by Stradivari and Guarneri.

“This is highly gratifying for me, because it proves what I first proposed 30 years ago – that the chemicals used to treat instruments and not the unadulterated wood itself – were the reasons for the great sound of these instruments,” Nagyvary explains.

“I was criticized and ridiculed when I made these claims, and to have undeniable scientific proof that I was correct is very satisfying, to say the least.”

Antonio Stradivari (1644 to 1737) made about 1,200 violins in his lifetime and kept a large inventory of them, and would only sell one when he was ready to part with it. Today, there are only about 600 Stradivarius violins remaining and they are valued at up to $5 million each.

Although lesser known, Guarneri del Gesu was a contemporary of Stradivari and his instruments are considered equal in quality and price by experts.

Nagyvary, a native of Hungary who learned to play the violin by using an instrument that once belonged to Albert Einstein, has wondered for years how Stradivari, who could barely read and had no scientific training, could have produced instruments with such a pristine sound.

“I started researching this in the early 1970s and from the beginning, I was convinced that the chemicals used to treat the instruments were the real key, not the wood itself,” he says.

There is still a missing piece of the puzzle, Nagyvary believes.

“The next step is to identify the chemical agents involved. To do that, more precious wood samples are needed,” he adds.

“But in the past, there has been a lack of cooperation from the antique violin business, and that has to be overcome. It may help us to produce violins and other instruments one day that are just as good as the million-dollar Stradivarius. And this research could also tell us ways to better preserve instruments, too.”

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Guarneri Nagyvary Stradivari Stradivarius

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>