Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover hummingbird secret

01.12.2006
Scientists identify part of the hummingbird's tiny bird brain that helps it hover

University of Alberta researchers have pinpointed a section in the tiny hummingbird's brain that may be responsible for its unique ability to stay stationary mid-air and hover.

"This was a very exciting moment for us," said Dr. Doug Wong-Wylie, Canada Research Chair in Behavioural and Systems Neuroscience and psychology professor at the U of A. "As soon as we looked at these specimens it was obvious that something was different in the hummingbirds' brains than other species."

Wong-Wylie and Dr. Andrew Iwaniuk, also from the Department of Psychology in the Faculty of Science, compared hummingbird brains to 28 other bird species, obtained from the National Museum of Natural History, the Field Museum of Natural History, and the Louisiana State University Museum of Natural Science. Hummingbirds are well known for their wing speed and ability to hover and fly forward and backward with more precision than a helicopter. It is critical that the hummingbird remain perfectly still as it feeds itself while darting in and out of flower blossoms with pinpoint accuracy. The bird must be able to maintain a stable position space, despite the fact that their wings are beating 75 times per second and that disruptive effects such as wind gusts could throw them off.

... more about:
»Iwaniuk »hummingbird »stationary

Much work has been done on the hummingbirds' physiological make up—such as its enlarged heart, high metabolic rate and specialized wing kinematics--but nothing has been done on the neural specializations of the bird.

"Part of the reason this type of work hasn't been done before is because of access to the birds," said Iwaniuk. "In Canada especially they tend to be uncommon, they come from exotic locales and they are not easy to catch, so we were very fortunate to be able to study the specimens we did."

The scientists found that a specific nuclei—one that detects any movement of the entire visual world—was two to five times bigger in the hummingbird than in any other species, relative to brain size. The hummingbird's brain is smaller than a fingertip. "We reasoned that this nucleus helps the hummingbird stay stationary in space, even while they're flying," said Wong-Wylie. "These birds must have a good optomotor response considering they are stationary 90 per cent of the time. This specific nuclei is likely responsible for that."

Wong-Wylie and Iwaniuk plan to continue this line of research and have hummingbirds track visual motion while watching the nucleus to see how it reacts.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Iwaniuk hummingbird stationary

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>