Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover hummingbird secret

01.12.2006
Scientists identify part of the hummingbird's tiny bird brain that helps it hover

University of Alberta researchers have pinpointed a section in the tiny hummingbird's brain that may be responsible for its unique ability to stay stationary mid-air and hover.

"This was a very exciting moment for us," said Dr. Doug Wong-Wylie, Canada Research Chair in Behavioural and Systems Neuroscience and psychology professor at the U of A. "As soon as we looked at these specimens it was obvious that something was different in the hummingbirds' brains than other species."

Wong-Wylie and Dr. Andrew Iwaniuk, also from the Department of Psychology in the Faculty of Science, compared hummingbird brains to 28 other bird species, obtained from the National Museum of Natural History, the Field Museum of Natural History, and the Louisiana State University Museum of Natural Science. Hummingbirds are well known for their wing speed and ability to hover and fly forward and backward with more precision than a helicopter. It is critical that the hummingbird remain perfectly still as it feeds itself while darting in and out of flower blossoms with pinpoint accuracy. The bird must be able to maintain a stable position space, despite the fact that their wings are beating 75 times per second and that disruptive effects such as wind gusts could throw them off.

... more about:
»Iwaniuk »hummingbird »stationary

Much work has been done on the hummingbirds' physiological make up—such as its enlarged heart, high metabolic rate and specialized wing kinematics--but nothing has been done on the neural specializations of the bird.

"Part of the reason this type of work hasn't been done before is because of access to the birds," said Iwaniuk. "In Canada especially they tend to be uncommon, they come from exotic locales and they are not easy to catch, so we were very fortunate to be able to study the specimens we did."

The scientists found that a specific nuclei—one that detects any movement of the entire visual world—was two to five times bigger in the hummingbird than in any other species, relative to brain size. The hummingbird's brain is smaller than a fingertip. "We reasoned that this nucleus helps the hummingbird stay stationary in space, even while they're flying," said Wong-Wylie. "These birds must have a good optomotor response considering they are stationary 90 per cent of the time. This specific nuclei is likely responsible for that."

Wong-Wylie and Iwaniuk plan to continue this line of research and have hummingbirds track visual motion while watching the nucleus to see how it reacts.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Iwaniuk hummingbird stationary

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>