Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tumour "weather forecast" gives new insights in cancer

The aggressiveness of cancer tumours may be determined by the tissue environment in which they grow, new research from the University of Dundee shows.

Dr Sandy Anderson, of the Division of Mathematics at Dundee, has developed a mathematical model - similar in concept to weather forecasting but considerably more complex - which predicts how tumours grow and invade tissue. The results produced by the model have given startling insights into how cancerous tumours develop in the body.

"What this model predicts is that the more barren and harsh the tissue environment surrounding it is, the more aggressive the tumour becomes," said Dr Anderson.

The findings have the potential to impact on how certain cancers are treated, by forcing the environment around the tumour to be considered as a contributory factor in how aggressive the cancer is.

... more about:
»Quaranta »mathematical »predict »tumour

The combination of maths and laboratory research to develop such models has been hailed as a "new era in cancer research" by Professor Vito Quaranta, a leading American cancer biologist who is collaborating on the project.

Professor Quaranta envisions a future when computer simulations like this will be used to predict a tumour’s clinical progression and formulate treatment plans, in a fashion not dissimilar to how we forecast the weather now.

"Today we can know pretty well that for the next few days we’re going to expect good weather or that there’s a storm on the way," said Professor Quaranta. "That’s the kind of predictive power we want to generate with our model for cancer invasion."

Dr Anderson’s research is published in the scientific journal Cell today, December 1st 2006, and is one of the few purely mathematical modelling papers to appear in the history of this prestigious biological journal.

"What our research shows is that the micro-environment in which the tumour grows acts like a Darwinian selective force upon how the tumour evolves," said Dr Anderson.

"Much of current biomedical research being carried out on cancer is done in isolation of the real environment in which the tumour naturally grows, but these results show that this environment could be the crucial determining factor in the tumour's development."

The model developed by Dr Anderson also shows a clear relationship between the shape of a cancer tumour and how aggressive it is. Aggressive tumours tend to assume a spidery shape in the model, while more benign growths are generally more spherical in shape.

"This is important in terms of the surgical removal of tumours," said Dr Anderson. "A model like this could help predict how tumours will grow in different tissue environments, i.e. different areas of the body, and what the best strategy may be to treat them."

"One interesting aspect of this is that if you make the environment the tumour is growing in more harsh or barren, then the more likely it is that any surviving cancer cells will be the most aggressive and hardiest ones."

"This clearly has a potential to impact on how certain cancers are treated, since most of the current treatment strategies are focussed on making the tissue environment as harsh as possible for the tumour in the hope of destroying it. But as my research predicts this could allow the most aggressive cancer cells to dominate any residual tumour left after treatment and since these more aggressive cells tend to be the most invasive, this could result in an increased chance of metastasis."

"In the future this research could help tailor treatment in a patient specific manner, with the mathematical model being an additional weapon in the armoury against cancer."

Dr Anderson is collaborating on his work with experts in cancer biology at Vanderbilt University in the United States, led by Professor Vito Quaranta and Dr. Alissa Weaver in conjunction with Professor Peter Cummings (Chemical Engineering), who are in the process of carrying out the physical validation of the results produced by the mathematical model.

Professor Quaranta hailed the combination of mathematics and laboratory research as a major development in how we approach cancer.

"A new era in cancer research has begun," said Professor Quaranta. "Mathematicians are bringing entirely new vistas to our field, cancer is no longer an ugly beast to defeat, but rather it is a complex process that can be described rationally and conquered perhaps slowly, but surely."

"I have never been more optimistic about our prospects of understanding the inner workings of cancer progression, to the same level we understand other complex processes, such as weather formation, global warming, etc."

"Understanding the individual components of cancer progression is still a necessary task, but it is no longer sufficient: It is how the components interact with each other that determines outcome. Our work shows this clearly, the genetic changes in cancer cells interact dynamically with their immediate surroundings, with outcomes that remind us of the natural selection process in evolution."

"The long-term goal is that, with the tools of mathematical modeling and computer simulation, cancer treatment will no longer be a trial and error guessing game. With mathematics-driven oncology research, we will be able to determine which drugs will work at which stage."

The project has been funded by $15 million from the National Cancer Institute and the National Institute of Health in the USA.

Roddy Isles | alfa
Further information:

Further reports about: Quaranta mathematical predict tumour

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>