Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumour "weather forecast" gives new insights in cancer

01.12.2006
The aggressiveness of cancer tumours may be determined by the tissue environment in which they grow, new research from the University of Dundee shows.

Dr Sandy Anderson, of the Division of Mathematics at Dundee, has developed a mathematical model - similar in concept to weather forecasting but considerably more complex - which predicts how tumours grow and invade tissue. The results produced by the model have given startling insights into how cancerous tumours develop in the body.

"What this model predicts is that the more barren and harsh the tissue environment surrounding it is, the more aggressive the tumour becomes," said Dr Anderson.

The findings have the potential to impact on how certain cancers are treated, by forcing the environment around the tumour to be considered as a contributory factor in how aggressive the cancer is.

... more about:
»Quaranta »mathematical »predict »tumour

The combination of maths and laboratory research to develop such models has been hailed as a "new era in cancer research" by Professor Vito Quaranta, a leading American cancer biologist who is collaborating on the project.

Professor Quaranta envisions a future when computer simulations like this will be used to predict a tumour’s clinical progression and formulate treatment plans, in a fashion not dissimilar to how we forecast the weather now.

"Today we can know pretty well that for the next few days we’re going to expect good weather or that there’s a storm on the way," said Professor Quaranta. "That’s the kind of predictive power we want to generate with our model for cancer invasion."

Dr Anderson’s research is published in the scientific journal Cell today, December 1st 2006, and is one of the few purely mathematical modelling papers to appear in the history of this prestigious biological journal.

"What our research shows is that the micro-environment in which the tumour grows acts like a Darwinian selective force upon how the tumour evolves," said Dr Anderson.

"Much of current biomedical research being carried out on cancer is done in isolation of the real environment in which the tumour naturally grows, but these results show that this environment could be the crucial determining factor in the tumour's development."

The model developed by Dr Anderson also shows a clear relationship between the shape of a cancer tumour and how aggressive it is. Aggressive tumours tend to assume a spidery shape in the model, while more benign growths are generally more spherical in shape.

"This is important in terms of the surgical removal of tumours," said Dr Anderson. "A model like this could help predict how tumours will grow in different tissue environments, i.e. different areas of the body, and what the best strategy may be to treat them."

"One interesting aspect of this is that if you make the environment the tumour is growing in more harsh or barren, then the more likely it is that any surviving cancer cells will be the most aggressive and hardiest ones."

"This clearly has a potential to impact on how certain cancers are treated, since most of the current treatment strategies are focussed on making the tissue environment as harsh as possible for the tumour in the hope of destroying it. But as my research predicts this could allow the most aggressive cancer cells to dominate any residual tumour left after treatment and since these more aggressive cells tend to be the most invasive, this could result in an increased chance of metastasis."

"In the future this research could help tailor treatment in a patient specific manner, with the mathematical model being an additional weapon in the armoury against cancer."

Dr Anderson is collaborating on his work with experts in cancer biology at Vanderbilt University in the United States, led by Professor Vito Quaranta and Dr. Alissa Weaver in conjunction with Professor Peter Cummings (Chemical Engineering), who are in the process of carrying out the physical validation of the results produced by the mathematical model.

Professor Quaranta hailed the combination of mathematics and laboratory research as a major development in how we approach cancer.

"A new era in cancer research has begun," said Professor Quaranta. "Mathematicians are bringing entirely new vistas to our field, cancer is no longer an ugly beast to defeat, but rather it is a complex process that can be described rationally and conquered perhaps slowly, but surely."

"I have never been more optimistic about our prospects of understanding the inner workings of cancer progression, to the same level we understand other complex processes, such as weather formation, global warming, etc."

"Understanding the individual components of cancer progression is still a necessary task, but it is no longer sufficient: It is how the components interact with each other that determines outcome. Our work shows this clearly, the genetic changes in cancer cells interact dynamically with their immediate surroundings, with outcomes that remind us of the natural selection process in evolution."

"The long-term goal is that, with the tools of mathematical modeling and computer simulation, cancer treatment will no longer be a trial and error guessing game. With mathematics-driven oncology research, we will be able to determine which drugs will work at which stage."

The project has been funded by $15 million from the National Cancer Institute and the National Institute of Health in the USA.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

Further reports about: Quaranta mathematical predict tumour

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>