Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Old enzyme learns new tricks

Scientists from the Norwich Research Park (NRP) have discovered an antibiotic-producing enzyme in oats that could be used in the future to protect major cereal crops from fungal diseases such as “take-all”. This disease is estimated to affect half the UK’s wheat crops costing the agricultural industry up to £60 million per year.

NRP scientists led by Professor Anne Osbourn at the John Innes Centre (Norwich, UK) in collaboration with IGER (Aberystwyth, UK) and the Institute of Plant Molecular Biology (IPMB, Université Louis Pasteur, Strasbourg, France) found that an enzyme from oats, called Sad2, helps produce a chemical that makes the plant resistant to infections. Take-all is a particularly damaging fungal disease because it infects the roots of the plant and can be passed onto subsequent crops grown in the same field.

The researchers found that Sad2 functions in the roots, producing the antimicrobial at the site most vulnerable to fungal attack. The research, funded by the Biotechnology & Biological Sciences Research Council and Gatsby Foundation, is published in the Proceedings of the National Academy of Sciences this week and shows that Sad2 has evolved from an ancient family of enzymes that have remained unchanged over millions of years and are almost identical across the plant, fungi and animal kingdoms. All the other enzymes in this family are involved in producing essential fats called sterols, such as cholesterol in humans, and include targets for cholesterol-lowering drugs, antifungals and herbicides. The discovery of a new member of this enzyme family with a completely different function was therefore surprising.

“Many plants produce chemicals called ‘natural products’ that are not essential to growth but have a range of important ecological functions. They can be attractants for pollinating insects or, in this case, protect the plant against diseases,” explains Professor Osbourn “Our aim in this work is to understand how these natural products are made and why the ability to produce particular natural products is limited to certain plant species. Our data show that the Sad2 gene has evolved from the most ancient and highly conserved cytochrome P450 family by gene duplication and has then diverged from its original role in making sterols to adopt a new function producing an antimicrobial chemical called avenacin”.

... more about:
»Cluster »Sad2 »enzyme »function

The synthesis of avenacin is a multistep process; the JIC team have already identified five genes coding for different enzymes in this pathway and are currently isolating the others. Unexpectedly, they found these genes were clustered together in the plant’s genetic code; clusters of genes that have connected functions are often found in bacteria or fungi but are extremely rare in plants.

“This is only the second gene cluster that has been identified in plants, but I now believe they are more common than previously thought,” says Professor Osbourn, “If we could transfer this gene cluster from oats into other plants, it might be possible to breed cereals that are resistant to devastating crop diseases such as take-all. Our findings also have broad significance for understanding how new metabolic pathways arise in plants, and this is an area that we are now investigating in other plant species such as rice and in the model plant Arabidopsis.”

The Sad2 gene technology is the subject of a pending worldwide patent application (International Patent Publication Number WO 2006/044508) assigned to the technology transfer company PBL. PBL are currently working closely with the AgBiotech company DuPont to develop further and commercially exploit applications of the technology. Further commercial partners are also being sought by PBL for certain applications of the technology.

Zoe Dunford | alfa
Further information:

Further reports about: Cluster Sad2 enzyme function

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>