Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old enzyme learns new tricks

27.11.2006
Scientists from the Norwich Research Park (NRP) have discovered an antibiotic-producing enzyme in oats that could be used in the future to protect major cereal crops from fungal diseases such as “take-all”. This disease is estimated to affect half the UK’s wheat crops costing the agricultural industry up to £60 million per year.

NRP scientists led by Professor Anne Osbourn at the John Innes Centre (Norwich, UK) in collaboration with IGER (Aberystwyth, UK) and the Institute of Plant Molecular Biology (IPMB, Université Louis Pasteur, Strasbourg, France) found that an enzyme from oats, called Sad2, helps produce a chemical that makes the plant resistant to infections. Take-all is a particularly damaging fungal disease because it infects the roots of the plant and can be passed onto subsequent crops grown in the same field.

The researchers found that Sad2 functions in the roots, producing the antimicrobial at the site most vulnerable to fungal attack. The research, funded by the Biotechnology & Biological Sciences Research Council and Gatsby Foundation, is published in the Proceedings of the National Academy of Sciences this week and shows that Sad2 has evolved from an ancient family of enzymes that have remained unchanged over millions of years and are almost identical across the plant, fungi and animal kingdoms. All the other enzymes in this family are involved in producing essential fats called sterols, such as cholesterol in humans, and include targets for cholesterol-lowering drugs, antifungals and herbicides. The discovery of a new member of this enzyme family with a completely different function was therefore surprising.

“Many plants produce chemicals called ‘natural products’ that are not essential to growth but have a range of important ecological functions. They can be attractants for pollinating insects or, in this case, protect the plant against diseases,” explains Professor Osbourn “Our aim in this work is to understand how these natural products are made and why the ability to produce particular natural products is limited to certain plant species. Our data show that the Sad2 gene has evolved from the most ancient and highly conserved cytochrome P450 family by gene duplication and has then diverged from its original role in making sterols to adopt a new function producing an antimicrobial chemical called avenacin”.

... more about:
»Cluster »Sad2 »enzyme »function

The synthesis of avenacin is a multistep process; the JIC team have already identified five genes coding for different enzymes in this pathway and are currently isolating the others. Unexpectedly, they found these genes were clustered together in the plant’s genetic code; clusters of genes that have connected functions are often found in bacteria or fungi but are extremely rare in plants.

“This is only the second gene cluster that has been identified in plants, but I now believe they are more common than previously thought,” says Professor Osbourn, “If we could transfer this gene cluster from oats into other plants, it might be possible to breed cereals that are resistant to devastating crop diseases such as take-all. Our findings also have broad significance for understanding how new metabolic pathways arise in plants, and this is an area that we are now investigating in other plant species such as rice and in the model plant Arabidopsis.”

The Sad2 gene technology is the subject of a pending worldwide patent application (International Patent Publication Number WO 2006/044508) assigned to the technology transfer company PBL. PBL are currently working closely with the AgBiotech company DuPont to develop further and commercially exploit applications of the technology. Further commercial partners are also being sought by PBL for certain applications of the technology.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cluster Sad2 enzyme function

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

LZH showcases laser material processing of tomorrow at the LASYS 2018

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>