Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TCD researchers chart chemical space in the search for new breast cancer treatments

27.11.2006
Centre for Synthesis and Chemical Biology researcher Dr Mary Meegan from the School of Pharmacy and Pharmaceutical Sciences in Trinity College Dublin with collaborators Drs Andrew Knox and David Lloyd have used computational methods to identify new leads for treating breast cancer. When tested against estrogen receptor (ER) positive cancer cell lines, 12 of the compounds performed up to 100 times better than Tamoxifen.

Estrogen and the estrogen receptor (ER)

"Estrogen works by locking into the ER, causing a change to the shape of the receptor," explains Dr Meegan. "This structural change enables the estrogen-receptor complex to bind to coactivator proteins and initiate a cascade of downstream effects resulting in cell proliferation."

Estrogen promotes cell proliferation in the breast and uterus but in breast cells with DNA mutations this process can increase the risk of developing breast cancer. This increased risk was already shown in studies involving the administration of estrogen to reduce cholesterol and maintain bone density in hormone replacement therapy (HRT).

... more about:
»Cancer »Estrogen »Meegan »Tamoxifen »antiestrogen »receptor

Tamoxifen and Raloxifene

Two of the current Selective Estrogen Receptor Modulator (SERM) drugs, Tamoxifen and Raloxifene, are antiestrogens and are used for treating breast cancer and osteoporosis respectively.

Tamoxifen mimics estrogen by preventing its binding to estrogen receptors in breast cells, but it can activate estrogen receptors in the uterus and long-term use is associated with a small increase in the risk of uterine cancer. However, it remains one of the endocrine drugs of choice for the treatment of breast cancer. Raloxifene in contrast reduces the risk of endometrial cancer and is currently used to treat osteoporosis.

Both drugs have benefits and limitations and a clinical trial called the Study of Tamoxifen and Raloxifene (STAR), due to finish this year, aims to evaluate their ability to prevent breast cancer in women who are at high risk of developing the disease.

"There is a requirement for new antiestrogen molecules that have improved specificity and toxicology profiles. We are working to identify molecules that are selective at the estrogen receptors in breast cells but which don't have a proliferative effect in other tissues," continues Dr Meegan.

Discovering new leads using structure-based drug design

Dr Meegan's group takes a practical approach to discovering potential leads for drugs. The estrogen receptor holds the key because its crystal structure and how it binds to antiestrogens is well documented. Using computational methods researchers can screen potential leads by studying their 3D conformations and binding properties.

"We group molecules with specific cancer activity together and analyse them in chemical space," continues Dr Meegan. "As part of his PhD thesis Dr Andrew Knox devised a scoring system to rate molecular fit in the estrogen receptor so we can accurately predict new leads."

Dr Knox screened thousands of molecules from drug databases using his own screening methods. He was able to narrow the search by devising a ranked hitlist where molecules with the highest score were identified for further exploration and biochemical testing. The next step in the drug discovery process was to set up a synthetic programme to explore the structure of the molecules and to design and synthesise analogues for further testing.

Dr Meegan's research group is working to develop efficient synthetic routes to the various series of compound structures identified by Dr Knox. They have tested them against ER positive, ER negative and uterine cancer lines to confirm that their action is mediated through the ER.

"The results so far have been very encouraging in that a number of the compounds identified perform better than Tamoxifen as antiestrogens and are showing no adverse effect in uterine cells. We are currently working to optimize the selective binding properties of these antiestrogenic compounds and to elucidate the mechanism of antihormonal resistance," concludes Dr Meegan.

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

Further reports about: Cancer Estrogen Meegan Tamoxifen antiestrogen receptor

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>