Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TCD researchers chart chemical space in the search for new breast cancer treatments

27.11.2006
Centre for Synthesis and Chemical Biology researcher Dr Mary Meegan from the School of Pharmacy and Pharmaceutical Sciences in Trinity College Dublin with collaborators Drs Andrew Knox and David Lloyd have used computational methods to identify new leads for treating breast cancer. When tested against estrogen receptor (ER) positive cancer cell lines, 12 of the compounds performed up to 100 times better than Tamoxifen.

Estrogen and the estrogen receptor (ER)

"Estrogen works by locking into the ER, causing a change to the shape of the receptor," explains Dr Meegan. "This structural change enables the estrogen-receptor complex to bind to coactivator proteins and initiate a cascade of downstream effects resulting in cell proliferation."

Estrogen promotes cell proliferation in the breast and uterus but in breast cells with DNA mutations this process can increase the risk of developing breast cancer. This increased risk was already shown in studies involving the administration of estrogen to reduce cholesterol and maintain bone density in hormone replacement therapy (HRT).

... more about:
»Cancer »Estrogen »Meegan »Tamoxifen »antiestrogen »receptor

Tamoxifen and Raloxifene

Two of the current Selective Estrogen Receptor Modulator (SERM) drugs, Tamoxifen and Raloxifene, are antiestrogens and are used for treating breast cancer and osteoporosis respectively.

Tamoxifen mimics estrogen by preventing its binding to estrogen receptors in breast cells, but it can activate estrogen receptors in the uterus and long-term use is associated with a small increase in the risk of uterine cancer. However, it remains one of the endocrine drugs of choice for the treatment of breast cancer. Raloxifene in contrast reduces the risk of endometrial cancer and is currently used to treat osteoporosis.

Both drugs have benefits and limitations and a clinical trial called the Study of Tamoxifen and Raloxifene (STAR), due to finish this year, aims to evaluate their ability to prevent breast cancer in women who are at high risk of developing the disease.

"There is a requirement for new antiestrogen molecules that have improved specificity and toxicology profiles. We are working to identify molecules that are selective at the estrogen receptors in breast cells but which don't have a proliferative effect in other tissues," continues Dr Meegan.

Discovering new leads using structure-based drug design

Dr Meegan's group takes a practical approach to discovering potential leads for drugs. The estrogen receptor holds the key because its crystal structure and how it binds to antiestrogens is well documented. Using computational methods researchers can screen potential leads by studying their 3D conformations and binding properties.

"We group molecules with specific cancer activity together and analyse them in chemical space," continues Dr Meegan. "As part of his PhD thesis Dr Andrew Knox devised a scoring system to rate molecular fit in the estrogen receptor so we can accurately predict new leads."

Dr Knox screened thousands of molecules from drug databases using his own screening methods. He was able to narrow the search by devising a ranked hitlist where molecules with the highest score were identified for further exploration and biochemical testing. The next step in the drug discovery process was to set up a synthetic programme to explore the structure of the molecules and to design and synthesise analogues for further testing.

Dr Meegan's research group is working to develop efficient synthetic routes to the various series of compound structures identified by Dr Knox. They have tested them against ER positive, ER negative and uterine cancer lines to confirm that their action is mediated through the ER.

"The results so far have been very encouraging in that a number of the compounds identified perform better than Tamoxifen as antiestrogens and are showing no adverse effect in uterine cells. We are currently working to optimize the selective binding properties of these antiestrogenic compounds and to elucidate the mechanism of antihormonal resistance," concludes Dr Meegan.

Orla Donoghue | alfa
Further information:
http://www.ucd.ie/cscb/

Further reports about: Cancer Estrogen Meegan Tamoxifen antiestrogen receptor

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>