Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns on tropical marine mollusk shell mirror gene expression patterns

23.11.2006
Scientists have identified a group of genes that control the formation of shapes and colour patterns on the shell of the tropical marine mollusc referred to as 'abalone'.

A study published today in the open access journal BMC Biology reveals that the shape and colour patterns on the shell of the mollusc mirror the localised expression of specific genes in the mantle, a layer of skin situated just below the shell. The authors of the study identify one gene in particular that controls the formation of blue dots on the shell of the mollusc.

Daniel Jackson, Bernard Degnan and colleagues from the University of Queensland, Australia, collaborated with colleagues from the Department of Geobiology at the University of Göttingen, Germany to analyse gene expression in the tropical abalone Haliotis asinina. They sequenced 530 randomly-selected genes expressed in the mantle tissue of the young abalone.

Jackson et al. identified 331 genes that encode proteins expressed in the mantle. Using a bioinformatics approach they find that 26% (85) of these genes encode secreted proteins. Jackson et al. then analysed the expression patterns of 22 of the genes encoding secreted proteins. They find that each gene is expressed in a specific, discrete area of the mantle, involved in the formation of a specific layer, shape or colouration pattern of the shell. They identify one gene in particular, Has-sometsuke, whose expression pattern maps precisely to pigmentation patterns in the shell. Blue dots on the shell of the abalone correspond to zones of high Has-sometsuke expression. By comparing the abalone DNA sequences with the genome of another related mollusc, Lottia scutum, the authors also show that genes encoding the secreted mantle proteins, which they call the 'secretome', in abalone, are likely to be rapidly evolving genes.

... more about:
»Expression »abalone »mantle »mollusc

Jackson et al. conclude: "The unexpected complexity and evolvability of this secretome and the modular design of the molluscan mantle enables the diversification of shell strength and design, and as such must contribute to the variety of adaptive architectures and colours found in mollusc shells."

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com/bmcbiol/

Further reports about: Expression abalone mantle mollusc

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>