Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slovenian team won the Grand prize at the international Genetically Engineered Machine (iGEM) competition at MIT

23.11.2006
A team of eight undergraduates from the University of Ljubljana in Slovenia—cheering and leaping onto MIT’s Kresge Auditorium stage in green team T-shirts--won the grand prize Sunday at the international Genetically Engineered Machine (iGEM) competition at MIT.

The group—which accepted the official BioBrick trophy--targeted a way to use engineered cells to intercept the body’s excessive response to infection, which can lead to a fatal condition called sepsis.

The goal of the 380 students on 35 university teams from around the world was to build biological systems the way a contractor would build a house—with a toolkit of standard parts.

Cells may one day be programmed to manufacture and deliver drugs or key molecules within the body, churn out fuels to run cars and heat houses, act as biosensors to detect pollutants, and a slew of as-yet unimagined functions. The MIT team, dubbed "eau d'ecoli," genetically engineered E. coli bacteria to smell like mint while it was growing and to smell like banana when it was done. The technique could potentially be used to improve the scent of other foul-smelling substances. “It’s kind of a cool thing to tell your bacteria how to smell,” said team member Veena Venkatachalam, an MIT sophomore majoring in chemistry and physics.

... more about:
»BioBrick »College »Slovenian »biological system »iGEM

The Slovenian team was one of the few to work with mammalian cells. Ljubljana microbiology student Monika Ciglic said that the team chose the more challenging and complicated mammalian cells over bacteria or viruses because of the potential rewards of developing a system that could work in the human body. Sepsis is one of the top 10 causes of death in the US, she said. But while the other teams had an available toolkit of 500 “BioBricks”—snippets of DNA that have been proven to accomplish certain tasks—the Slovenian team had to build all their BioBricks from scratch.

Information about BioBricks, and a toolkit to make and manipulate them, was provided by the Registry of Standard Biological Parts created by MIT.

The first grand prize runner up was Imperial College in London for their design of an oscillator device that was stable, had a high signal-to-noise ratio and could be easily integrated into other systems. Such a device has potential biomedical applications.

The second runner up was Princeton, for its team’s work on programming mouse embryonic stem cells to differentiate on command. The Princeton team’s project could one day create organs and tissues of choice from stem cells, which have the ability to turn into any part of the body. Other projects with potential applications included University of Edinburgh’s device to detect arsenic in well water, a problem that affects 100 million people around the world, especially in poorer nations;

The iGEM director, Randy Rettberg, principal research engineer in biological engineering, is convinced that synthetic biology based on standard part will spawn a worldwide industry based on engineering biological systems from standard parts. The possibilities for start-ups include companies that will make and catalog the individual parts, as well as companies that will exploit the technology to solve problems related to energy, the environment, medicine and more.

Drew Endy, assistant professor of biological engineering, said that it is “completely remarkable that 40 months ago, none of this was happening anywhere.” A small pilot program held during Independent Activities Period has grown into an international competition, and Endy said that as DNA synthesis becomes more common, the field will expand even more rapidly.

As with any technology, the danger of misuse exists. Perceptions of synthetic biology range from excitement to fear and mistrust. Endy said that the work is so new, it’s bound to scare some people. “A lot of people who were scaring folks in 1975 now have Nobel prizes,” he said.

Participants and prizes

In addition to Ljubljana, teams participating from other countries included those from University of Cambridge and Imperial College in England; University of Edinburgh; Swiss Federal Institute of Technology (ETH Zurich); Freiburg University; two institutes from Valencia, Spain; a Latin American team of high school and undergraduate students from Colombia; universities and centers in Mexico; Chiba University in Japan; a collaboration of students from Tokyo universities; the National Centre for Biological Sciences in Bangalore, University of Calgary, McGill University, University of Toronto and University of Waterloo,.

United States participants included Duke University, University of Arizona, University of Oklahoma, Boston University, Brown, Harvard, University of Michigan, Missouri Western State University, MIT, Princeton, Mississippi State, Davidson College, Rice, UC Berkeley, Purdue, Penn State, Prairie View A&M University, UT Austin, and UC San Francisco.

A panel of judges from industry and academia selected the winners at iGEM 2006 Jamboree. On Saturday, the teams presented overviews of projects they completed during the summer. On Sunday, awards were given on a variety of criteria:

(All recipients listed in order of first, second and third place prizes)

• Best part: Berkeley, Davidson College, Tokyo Alliance

• Best device: ETH Zurich, Penn State, Edinburgh

• Best system: MIT, Slovenia and UT Austin

• Best presentation: Missouri Western, Cambridge, MIT

• Best poster: Edinburgh, Missouri and Davidson, Cambridge

• Best documentation: Imperial College, Cambridge, Slovenia

• Best measurement and part characterization: Imperial College, Slovenia, Berkeley

• Best cooperation and collaboration: Tokyo Alliance, Davidson and Missouri, Toronto and Waterloo

• Best conquest of adversity: Calgary, Valencia, Davidson and Missouri

• Best real world application: Edinburgh, Princeton, Michigan

Honorable mention went to Latin America “for taking iGEM out of this world”; to McGill “for bringing cells together;” Oklahoma for “most likely to appear on CSI;” Duke for most ambitious; Chiba for most creative brainstorming; Rice for most-organized get-togethers; Purdue for best bridging strategy; Brown for “inventing a category of bacterial schoolyard games;” Prairie View for progress in detecting and remediating metals in soils; Bangalore for strategies for self-assembly; Harvard for “progress toward an extraordinarily difficult goal and best wiki organization;” the Mexico collaboration for “progress toward biological art;” University of Arizona for progress toward synthetic biology in three colors; University of California at San Francisco for steering e coli in new directions; Mississippi State for advancing hydrogen fuels to biodetection.

iGEM is an initiative of the MIT iCampus program, which is funded by Microsoft Corp.

(source: Massachusetts Institute of Technology's Press Release)

Brigita Pirc | alfa
Further information:
http://parts2.mit.edu/wiki/index.php/Ljubljana%2C_Slovenia_2006

Further reports about: BioBrick College Slovenian biological system iGEM

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>