Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slovenian team won the Grand prize at the international Genetically Engineered Machine (iGEM) competition at MIT

23.11.2006
A team of eight undergraduates from the University of Ljubljana in Slovenia—cheering and leaping onto MIT’s Kresge Auditorium stage in green team T-shirts--won the grand prize Sunday at the international Genetically Engineered Machine (iGEM) competition at MIT.

The group—which accepted the official BioBrick trophy--targeted a way to use engineered cells to intercept the body’s excessive response to infection, which can lead to a fatal condition called sepsis.

The goal of the 380 students on 35 university teams from around the world was to build biological systems the way a contractor would build a house—with a toolkit of standard parts.

Cells may one day be programmed to manufacture and deliver drugs or key molecules within the body, churn out fuels to run cars and heat houses, act as biosensors to detect pollutants, and a slew of as-yet unimagined functions. The MIT team, dubbed "eau d'ecoli," genetically engineered E. coli bacteria to smell like mint while it was growing and to smell like banana when it was done. The technique could potentially be used to improve the scent of other foul-smelling substances. “It’s kind of a cool thing to tell your bacteria how to smell,” said team member Veena Venkatachalam, an MIT sophomore majoring in chemistry and physics.

... more about:
»BioBrick »College »Slovenian »biological system »iGEM

The Slovenian team was one of the few to work with mammalian cells. Ljubljana microbiology student Monika Ciglic said that the team chose the more challenging and complicated mammalian cells over bacteria or viruses because of the potential rewards of developing a system that could work in the human body. Sepsis is one of the top 10 causes of death in the US, she said. But while the other teams had an available toolkit of 500 “BioBricks”—snippets of DNA that have been proven to accomplish certain tasks—the Slovenian team had to build all their BioBricks from scratch.

Information about BioBricks, and a toolkit to make and manipulate them, was provided by the Registry of Standard Biological Parts created by MIT.

The first grand prize runner up was Imperial College in London for their design of an oscillator device that was stable, had a high signal-to-noise ratio and could be easily integrated into other systems. Such a device has potential biomedical applications.

The second runner up was Princeton, for its team’s work on programming mouse embryonic stem cells to differentiate on command. The Princeton team’s project could one day create organs and tissues of choice from stem cells, which have the ability to turn into any part of the body. Other projects with potential applications included University of Edinburgh’s device to detect arsenic in well water, a problem that affects 100 million people around the world, especially in poorer nations;

The iGEM director, Randy Rettberg, principal research engineer in biological engineering, is convinced that synthetic biology based on standard part will spawn a worldwide industry based on engineering biological systems from standard parts. The possibilities for start-ups include companies that will make and catalog the individual parts, as well as companies that will exploit the technology to solve problems related to energy, the environment, medicine and more.

Drew Endy, assistant professor of biological engineering, said that it is “completely remarkable that 40 months ago, none of this was happening anywhere.” A small pilot program held during Independent Activities Period has grown into an international competition, and Endy said that as DNA synthesis becomes more common, the field will expand even more rapidly.

As with any technology, the danger of misuse exists. Perceptions of synthetic biology range from excitement to fear and mistrust. Endy said that the work is so new, it’s bound to scare some people. “A lot of people who were scaring folks in 1975 now have Nobel prizes,” he said.

Participants and prizes

In addition to Ljubljana, teams participating from other countries included those from University of Cambridge and Imperial College in England; University of Edinburgh; Swiss Federal Institute of Technology (ETH Zurich); Freiburg University; two institutes from Valencia, Spain; a Latin American team of high school and undergraduate students from Colombia; universities and centers in Mexico; Chiba University in Japan; a collaboration of students from Tokyo universities; the National Centre for Biological Sciences in Bangalore, University of Calgary, McGill University, University of Toronto and University of Waterloo,.

United States participants included Duke University, University of Arizona, University of Oklahoma, Boston University, Brown, Harvard, University of Michigan, Missouri Western State University, MIT, Princeton, Mississippi State, Davidson College, Rice, UC Berkeley, Purdue, Penn State, Prairie View A&M University, UT Austin, and UC San Francisco.

A panel of judges from industry and academia selected the winners at iGEM 2006 Jamboree. On Saturday, the teams presented overviews of projects they completed during the summer. On Sunday, awards were given on a variety of criteria:

(All recipients listed in order of first, second and third place prizes)

• Best part: Berkeley, Davidson College, Tokyo Alliance

• Best device: ETH Zurich, Penn State, Edinburgh

• Best system: MIT, Slovenia and UT Austin

• Best presentation: Missouri Western, Cambridge, MIT

• Best poster: Edinburgh, Missouri and Davidson, Cambridge

• Best documentation: Imperial College, Cambridge, Slovenia

• Best measurement and part characterization: Imperial College, Slovenia, Berkeley

• Best cooperation and collaboration: Tokyo Alliance, Davidson and Missouri, Toronto and Waterloo

• Best conquest of adversity: Calgary, Valencia, Davidson and Missouri

• Best real world application: Edinburgh, Princeton, Michigan

Honorable mention went to Latin America “for taking iGEM out of this world”; to McGill “for bringing cells together;” Oklahoma for “most likely to appear on CSI;” Duke for most ambitious; Chiba for most creative brainstorming; Rice for most-organized get-togethers; Purdue for best bridging strategy; Brown for “inventing a category of bacterial schoolyard games;” Prairie View for progress in detecting and remediating metals in soils; Bangalore for strategies for self-assembly; Harvard for “progress toward an extraordinarily difficult goal and best wiki organization;” the Mexico collaboration for “progress toward biological art;” University of Arizona for progress toward synthetic biology in three colors; University of California at San Francisco for steering e coli in new directions; Mississippi State for advancing hydrogen fuels to biodetection.

iGEM is an initiative of the MIT iCampus program, which is funded by Microsoft Corp.

(source: Massachusetts Institute of Technology's Press Release)

Brigita Pirc | alfa
Further information:
http://parts2.mit.edu/wiki/index.php/Ljubljana%2C_Slovenia_2006

Further reports about: BioBrick College Slovenian biological system iGEM

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>