Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starting over: Wnt reactivates dormant limb regeneration program

21.11.2006
Chop off a salamander's leg and a brand new one will sprout in no time. But most animals have lost the ability to replace missing limbs. Now, a research team at the Salk Institute for Biological Studies has been able to regenerate a wing in a chick embryo – a species not known to be able to regrow limbs - suggesting that the potential for such regeneration exists innately in all vertebrates, including humans.

Their study, published in the advance online edition of Genes and Development on Nov. 17, demonstrates that vertebrate regeneration is under the control of the powerful Wnt signaling system: Activating it overcomes the mysterious barrier to regeneration in animals like chicks that can't normally replace missing limbs while inactivating it in animals known to be able to regenerate their limbs (frogs, zebrafish, and salamanders) shuts down their ability to replace missing legs and tails.

"In this simple experiment, we removed part of the chick embryo's wing, activated Wnt signaling, and got the whole limb back - a beautiful and perfect wing," said the lead author, Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory. "By changing the expression of a few genes, you can change the ability of a vertebrate to regenerate their limbs, rebuilding blood vessels, bone, muscles, and skin - everything that is needed."

This new discovery "opens up an entirely new area of research," Belmonte says. "Even though certain animals have lost their ability to regenerate limbs during evolution, conserved genetic machinery may still be present, and can be put to work again," he said. Previously, scientists believed that once stem cells turned into muscles, bone or any other type of cells, that was their fate for life – and if those cells were injured, they didn't regenerate, but grew scar tissue.

Manipulating Wnt signaling in humans is, of course, not possible at this point, Belmonte says, but hopes that these findings may eventually offer insights into current research examining the ability of stem cells to build new human body tissues and parts. For example, he said Wnt signaling may push mature cells go back in time and "dedifferentiate" into stem-like cells, in order to be able to then differentiate once more, producing all of the different tissues needed to build a limb.

"This is the reverse of how we currently are thinking of using stem cells therapeutically, so understanding this process could be very illuminating," he says. "It could be that we could use the Wnt signaling pathway to dedifferentiate cells inside a body at the site of a limb injury, and have them carry out the job of building a new structure."

Members of the Wnt gene family (for "wingless," originally discovered in fruit flies) are known to play a role in cell proliferative processes, like fetal growth and cancer development, and Belmonte's lab has characterized the crucial role of Wnt signaling in limb growth. In 1995, the Salk researchers were first to demonstrate that they could induce the growth of extra limbs in embryonic chicks, and in 2001, they found that the Wnt signaling system played a critical role in triggering both normal and abnormal limb growth.

The current study was designed to see if Wnt signaling also was involved in the regeneration of limbs and included three groups of vertebrates: zebrafish and salamanders, which can regenerate limbs throughout their lives; frogs, which can only regenerate new limbs during a limited period during their fetal development; and chicks, which cannot regenerate limbs.

To manipulate animals' regeneration ability, the Salk researchers used inhibitory and excitatory factors for Wnt signaling, which they delivered directly to the remaining bulge after they cut a limb from the experimental embryos.

In adult zebrafish and salamanders, they found that blocking Wnt signaling with the inhibitory factors, prevented normal regeneration. And, conversely, when they treated mutant adult zebrafish that cannot regenerate with the excitatory agent, the ability to regenerate their fins was rescued, Belmonte says.

Using an inhibitory agent on frogs before the regeneration-enabled developmental window closed resulted in loss of that ability, but treating them with the excitatory agent after they had lost their regenerative capacity induced new limb growth.

They then performed the key experiment, successfully testing the ability of an excitatory factor to produce limb regeneration in chick embryos. "The signal restarted the process, and genes that were involved in the initial development of the limb were turned back on," Belmonte says. "It is simply amazing."

The procedure was tricky, however. Belmonte noted that if Wnt signaling is activated for too long of a period in these animals, cancer results. "This has to be done in a controlled way, with just a few cells for a specific amount of time," he says. "The fact is that this pathway is involved in cell proliferation, whether it is to generate or regenerate limbs, control stem cells, or produce cancer."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo Regeneration Wnt Wnt signaling excitatory regenerate stem cells

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>