Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starting over: Wnt reactivates dormant limb regeneration program

21.11.2006
Chop off a salamander's leg and a brand new one will sprout in no time. But most animals have lost the ability to replace missing limbs. Now, a research team at the Salk Institute for Biological Studies has been able to regenerate a wing in a chick embryo – a species not known to be able to regrow limbs - suggesting that the potential for such regeneration exists innately in all vertebrates, including humans.

Their study, published in the advance online edition of Genes and Development on Nov. 17, demonstrates that vertebrate regeneration is under the control of the powerful Wnt signaling system: Activating it overcomes the mysterious barrier to regeneration in animals like chicks that can't normally replace missing limbs while inactivating it in animals known to be able to regenerate their limbs (frogs, zebrafish, and salamanders) shuts down their ability to replace missing legs and tails.

"In this simple experiment, we removed part of the chick embryo's wing, activated Wnt signaling, and got the whole limb back - a beautiful and perfect wing," said the lead author, Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory. "By changing the expression of a few genes, you can change the ability of a vertebrate to regenerate their limbs, rebuilding blood vessels, bone, muscles, and skin - everything that is needed."

This new discovery "opens up an entirely new area of research," Belmonte says. "Even though certain animals have lost their ability to regenerate limbs during evolution, conserved genetic machinery may still be present, and can be put to work again," he said. Previously, scientists believed that once stem cells turned into muscles, bone or any other type of cells, that was their fate for life – and if those cells were injured, they didn't regenerate, but grew scar tissue.

Manipulating Wnt signaling in humans is, of course, not possible at this point, Belmonte says, but hopes that these findings may eventually offer insights into current research examining the ability of stem cells to build new human body tissues and parts. For example, he said Wnt signaling may push mature cells go back in time and "dedifferentiate" into stem-like cells, in order to be able to then differentiate once more, producing all of the different tissues needed to build a limb.

"This is the reverse of how we currently are thinking of using stem cells therapeutically, so understanding this process could be very illuminating," he says. "It could be that we could use the Wnt signaling pathway to dedifferentiate cells inside a body at the site of a limb injury, and have them carry out the job of building a new structure."

Members of the Wnt gene family (for "wingless," originally discovered in fruit flies) are known to play a role in cell proliferative processes, like fetal growth and cancer development, and Belmonte's lab has characterized the crucial role of Wnt signaling in limb growth. In 1995, the Salk researchers were first to demonstrate that they could induce the growth of extra limbs in embryonic chicks, and in 2001, they found that the Wnt signaling system played a critical role in triggering both normal and abnormal limb growth.

The current study was designed to see if Wnt signaling also was involved in the regeneration of limbs and included three groups of vertebrates: zebrafish and salamanders, which can regenerate limbs throughout their lives; frogs, which can only regenerate new limbs during a limited period during their fetal development; and chicks, which cannot regenerate limbs.

To manipulate animals' regeneration ability, the Salk researchers used inhibitory and excitatory factors for Wnt signaling, which they delivered directly to the remaining bulge after they cut a limb from the experimental embryos.

In adult zebrafish and salamanders, they found that blocking Wnt signaling with the inhibitory factors, prevented normal regeneration. And, conversely, when they treated mutant adult zebrafish that cannot regenerate with the excitatory agent, the ability to regenerate their fins was rescued, Belmonte says.

Using an inhibitory agent on frogs before the regeneration-enabled developmental window closed resulted in loss of that ability, but treating them with the excitatory agent after they had lost their regenerative capacity induced new limb growth.

They then performed the key experiment, successfully testing the ability of an excitatory factor to produce limb regeneration in chick embryos. "The signal restarted the process, and genes that were involved in the initial development of the limb were turned back on," Belmonte says. "It is simply amazing."

The procedure was tricky, however. Belmonte noted that if Wnt signaling is activated for too long of a period in these animals, cancer results. "This has to be done in a controlled way, with just a few cells for a specific amount of time," he says. "The fact is that this pathway is involved in cell proliferation, whether it is to generate or regenerate limbs, control stem cells, or produce cancer."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo Regeneration Wnt Wnt signaling excitatory regenerate stem cells

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>