Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starting over: Wnt reactivates dormant limb regeneration program

21.11.2006
Chop off a salamander's leg and a brand new one will sprout in no time. But most animals have lost the ability to replace missing limbs. Now, a research team at the Salk Institute for Biological Studies has been able to regenerate a wing in a chick embryo – a species not known to be able to regrow limbs - suggesting that the potential for such regeneration exists innately in all vertebrates, including humans.

Their study, published in the advance online edition of Genes and Development on Nov. 17, demonstrates that vertebrate regeneration is under the control of the powerful Wnt signaling system: Activating it overcomes the mysterious barrier to regeneration in animals like chicks that can't normally replace missing limbs while inactivating it in animals known to be able to regenerate their limbs (frogs, zebrafish, and salamanders) shuts down their ability to replace missing legs and tails.

"In this simple experiment, we removed part of the chick embryo's wing, activated Wnt signaling, and got the whole limb back - a beautiful and perfect wing," said the lead author, Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory. "By changing the expression of a few genes, you can change the ability of a vertebrate to regenerate their limbs, rebuilding blood vessels, bone, muscles, and skin - everything that is needed."

This new discovery "opens up an entirely new area of research," Belmonte says. "Even though certain animals have lost their ability to regenerate limbs during evolution, conserved genetic machinery may still be present, and can be put to work again," he said. Previously, scientists believed that once stem cells turned into muscles, bone or any other type of cells, that was their fate for life – and if those cells were injured, they didn't regenerate, but grew scar tissue.

Manipulating Wnt signaling in humans is, of course, not possible at this point, Belmonte says, but hopes that these findings may eventually offer insights into current research examining the ability of stem cells to build new human body tissues and parts. For example, he said Wnt signaling may push mature cells go back in time and "dedifferentiate" into stem-like cells, in order to be able to then differentiate once more, producing all of the different tissues needed to build a limb.

"This is the reverse of how we currently are thinking of using stem cells therapeutically, so understanding this process could be very illuminating," he says. "It could be that we could use the Wnt signaling pathway to dedifferentiate cells inside a body at the site of a limb injury, and have them carry out the job of building a new structure."

Members of the Wnt gene family (for "wingless," originally discovered in fruit flies) are known to play a role in cell proliferative processes, like fetal growth and cancer development, and Belmonte's lab has characterized the crucial role of Wnt signaling in limb growth. In 1995, the Salk researchers were first to demonstrate that they could induce the growth of extra limbs in embryonic chicks, and in 2001, they found that the Wnt signaling system played a critical role in triggering both normal and abnormal limb growth.

The current study was designed to see if Wnt signaling also was involved in the regeneration of limbs and included three groups of vertebrates: zebrafish and salamanders, which can regenerate limbs throughout their lives; frogs, which can only regenerate new limbs during a limited period during their fetal development; and chicks, which cannot regenerate limbs.

To manipulate animals' regeneration ability, the Salk researchers used inhibitory and excitatory factors for Wnt signaling, which they delivered directly to the remaining bulge after they cut a limb from the experimental embryos.

In adult zebrafish and salamanders, they found that blocking Wnt signaling with the inhibitory factors, prevented normal regeneration. And, conversely, when they treated mutant adult zebrafish that cannot regenerate with the excitatory agent, the ability to regenerate their fins was rescued, Belmonte says.

Using an inhibitory agent on frogs before the regeneration-enabled developmental window closed resulted in loss of that ability, but treating them with the excitatory agent after they had lost their regenerative capacity induced new limb growth.

They then performed the key experiment, successfully testing the ability of an excitatory factor to produce limb regeneration in chick embryos. "The signal restarted the process, and genes that were involved in the initial development of the limb were turned back on," Belmonte says. "It is simply amazing."

The procedure was tricky, however. Belmonte noted that if Wnt signaling is activated for too long of a period in these animals, cancer results. "This has to be done in a controlled way, with just a few cells for a specific amount of time," he says. "The fact is that this pathway is involved in cell proliferation, whether it is to generate or regenerate limbs, control stem cells, or produce cancer."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo Regeneration Wnt Wnt signaling excitatory regenerate stem cells

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>