Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does natural selection drive the evolution of cancer?

21.11.2006
Emerging field sees cancer as an evolutionary and ecological process

The dynamics of evolution are fully in play within the environment of a tumor, just as they are in forests and meadows, oceans and streams. This is the view of researchers in an emerging cross-disciplinary field that brings the thinking of ecologists and evolutionary biologists to bear on cancer biology.

Insights from their work may have profound implications for understanding why current cancer therapies often fail and how radically new therapies might be devised.

A review by researchers at The Wistar Institute of current research in this new field, published online November 16, will appear in the December issue of the journal Nature Reviews Cancer.

... more about:
»Evolution »Maley »natural »tumor cells

"A tumor cell population is constantly evolving through natural selection," says Carlo C. Maley, Ph.D., an assistant professor in the Molecular and Cellular Oncogenesis Program at Wistar whose own research focuses on this area. He is senior author on the new review. "The mutations that benefit the survival and reproduction of cells in a tumor are the things that drive it towards malignancy.

"Evolution is also driving therapeutic resistance," Maley adds. "When you apply chemotherapy to a population of tumor cells, you're quite likely to have a resistant mutant somewhere in that population of billions or even trillions of cells. This is the central problem in oncology. The reason we haven't been able to cure cancer is that we're selecting for resistant tumor cells. When we spray a field with pesticide, we select for resistant pests. It's the same idea."

Maley notes that there are three necessary and sufficient conditions for natural selection to occur and that all are met in a population of tumor cells. The first requirement is that there be variation in the population. This variation is evident in tumors, which are a mosaic of many different genetic mutants.

The second condition is that the variation must be heritable. This, too, can be seen within a tumor-cell population. When mutant tumor cells divide to replicate, the daughter cells share the same mutations.

The final condition is that the variation has to affect fitness, the survival and reproduction of the cells. All of the characteristics that are considered hallmarks of cancer affect fitness, according to Maley. Among these are that cancer cells no longer heed normal growth inhibition signals in their environment, they no longer require an external signal to divide as healthy cells do, and they are able to suppress a vital set of internal instructions that require cells to self-destruct when their genes are mutated beyond repair. This protective cell-suicide program carried by normal cells is known as apoptosis.

Seeing a tumor in this light opens a window on new therapeutic strategies.

"It's not just a metaphor to say tumor cell populations are evolving," Maley says. "Evolution is going on in the tumor. So let's think about how we might want to influence that evolution. Can we push it down paths that might be more beneficial to us?"

One idea might be to develop new drugs that would act as benign cell boosters. Such drugs would specifically target the more benign cells in a tumor to increase their relative fitness over their malignant neighbors. This would allow the benign cells to outcompete the malignant cells, leading to a less aggressive, less dangerous tumor.

"Another idea we're pursuing is what we call the sucker's gambit," Maley says. "In this case, you try to increase the fitness of chemosensitive cells so that they outcompete any resistant cells that are in the tumor. And then you apply your chemotherapy. So you sucker the tumor into a vulnerable state and then you hit it with your therapy."

In their review, Maley and his coauthors also explored how the ecological ideas of competition, predation, parasitism, and mutualism unfold in tumors. Here again, they found that the concepts from another field helped to illuminate cancer biology.

Mutant cells compete with each other for needed resources. The immune system often kills tumor cells like a predator hunting prey, and the tumor cells that develop defenses against the predation are the ones that survive and reproduce.

An example of parasitism in the tumor environment can be seen in angiogenesis, in which a subset of tumor cells send chemical signals to stimulate the host to generate new blood vessels to supply the tumor with nutrients. The neighboring cells that aren't investing resources in producing the signals take advantage of the nutrients nonetheless.

Mutualism describes a situation in which two organisms interact in a mutually beneficial way. Tumor cells send signals to stimulate the growth of the cells that form the scaffold in which the tumor cells grow, known as fibroblasts. The fibroblasts, in turn, send signals to the tumor cells to stimulate their growth. Recent studies suggest, too, that the fibroblasts in a tumor microenvironment begin to acquire mutations of their own.

"They're co-evolving, and it becomes a dynamic, runaway process," Maley says.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Evolution Maley natural tumor cells

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>