Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does natural selection drive the evolution of cancer?

21.11.2006
Emerging field sees cancer as an evolutionary and ecological process

The dynamics of evolution are fully in play within the environment of a tumor, just as they are in forests and meadows, oceans and streams. This is the view of researchers in an emerging cross-disciplinary field that brings the thinking of ecologists and evolutionary biologists to bear on cancer biology.

Insights from their work may have profound implications for understanding why current cancer therapies often fail and how radically new therapies might be devised.

A review by researchers at The Wistar Institute of current research in this new field, published online November 16, will appear in the December issue of the journal Nature Reviews Cancer.

... more about:
»Evolution »Maley »natural »tumor cells

"A tumor cell population is constantly evolving through natural selection," says Carlo C. Maley, Ph.D., an assistant professor in the Molecular and Cellular Oncogenesis Program at Wistar whose own research focuses on this area. He is senior author on the new review. "The mutations that benefit the survival and reproduction of cells in a tumor are the things that drive it towards malignancy.

"Evolution is also driving therapeutic resistance," Maley adds. "When you apply chemotherapy to a population of tumor cells, you're quite likely to have a resistant mutant somewhere in that population of billions or even trillions of cells. This is the central problem in oncology. The reason we haven't been able to cure cancer is that we're selecting for resistant tumor cells. When we spray a field with pesticide, we select for resistant pests. It's the same idea."

Maley notes that there are three necessary and sufficient conditions for natural selection to occur and that all are met in a population of tumor cells. The first requirement is that there be variation in the population. This variation is evident in tumors, which are a mosaic of many different genetic mutants.

The second condition is that the variation must be heritable. This, too, can be seen within a tumor-cell population. When mutant tumor cells divide to replicate, the daughter cells share the same mutations.

The final condition is that the variation has to affect fitness, the survival and reproduction of the cells. All of the characteristics that are considered hallmarks of cancer affect fitness, according to Maley. Among these are that cancer cells no longer heed normal growth inhibition signals in their environment, they no longer require an external signal to divide as healthy cells do, and they are able to suppress a vital set of internal instructions that require cells to self-destruct when their genes are mutated beyond repair. This protective cell-suicide program carried by normal cells is known as apoptosis.

Seeing a tumor in this light opens a window on new therapeutic strategies.

"It's not just a metaphor to say tumor cell populations are evolving," Maley says. "Evolution is going on in the tumor. So let's think about how we might want to influence that evolution. Can we push it down paths that might be more beneficial to us?"

One idea might be to develop new drugs that would act as benign cell boosters. Such drugs would specifically target the more benign cells in a tumor to increase their relative fitness over their malignant neighbors. This would allow the benign cells to outcompete the malignant cells, leading to a less aggressive, less dangerous tumor.

"Another idea we're pursuing is what we call the sucker's gambit," Maley says. "In this case, you try to increase the fitness of chemosensitive cells so that they outcompete any resistant cells that are in the tumor. And then you apply your chemotherapy. So you sucker the tumor into a vulnerable state and then you hit it with your therapy."

In their review, Maley and his coauthors also explored how the ecological ideas of competition, predation, parasitism, and mutualism unfold in tumors. Here again, they found that the concepts from another field helped to illuminate cancer biology.

Mutant cells compete with each other for needed resources. The immune system often kills tumor cells like a predator hunting prey, and the tumor cells that develop defenses against the predation are the ones that survive and reproduce.

An example of parasitism in the tumor environment can be seen in angiogenesis, in which a subset of tumor cells send chemical signals to stimulate the host to generate new blood vessels to supply the tumor with nutrients. The neighboring cells that aren't investing resources in producing the signals take advantage of the nutrients nonetheless.

Mutualism describes a situation in which two organisms interact in a mutually beneficial way. Tumor cells send signals to stimulate the growth of the cells that form the scaffold in which the tumor cells grow, known as fibroblasts. The fibroblasts, in turn, send signals to the tumor cells to stimulate their growth. Recent studies suggest, too, that the fibroblasts in a tumor microenvironment begin to acquire mutations of their own.

"They're co-evolving, and it becomes a dynamic, runaway process," Maley says.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Evolution Maley natural tumor cells

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>