Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research suggests beta agonists may alter the immune system

New research at Wake Forest University School of Medicine suggests that certain inhaled asthma medications – as well as similar chemicals our bodies produce during times of high stress – may worsen diseases such as asthma, heart failure and lupus that involve inflammation.

The scientific team led by Raymond Penn, Ph.D., and Matthew Loza, Ph.D, found that beta-agonists, such as those used in the treatment of asthma, increase the accumulation of type 2 T cells, a type of white blood cell that participates in immune system defense mechanisms. In certain diseases such as asthma and lupus, an over-reactive type 2 T cell response occurs and is believed to contribute to the disease.

"Inhaled beta-agonists are very effective in opening up airways and allowing asthmatics to breathe, but their ability to address the underlying inflammation that causes most asthma has been debated for years," said Penn, an associate professor in the Department of Internal Medicine and the Center for Human Genomics.

The research is reported on-line in the Journal of Allergy and Clinical Immunology and will be published in an upcoming print issue.

... more about:
»Asthma »Disease »T cells »beta-agonist

In fact, numerous clinical studies have reported that asthma symptoms tend to worsen over time in patients on continuous beta-agonist therapy. Although the reasons for this deterioration of asthma control are not clear, the Food and Drug Administration now recommends that the treatment of asthma with long-acting beta-agonists be supplemented with inhaled anti-inflammatory medications.

Using blood samples from human participants, the scientists measured the effect of beta-agonists on white blood cells that were grown in the laboratory. They were surprised to find that the drugs promoted a preferential accumulation of type 2 T cells.

Beta-agonists belong to a class of chemicals that include the hormone adrenaline produced by the body. Consequently, conditions that elevate blood adrenaline, such as emotional stress or heart failure, may also have the ability to alter the immune system by increasing type 2 T cells, and thereby promote or worsen disease.

"Although further research is needed to confirm that these findings occur in the human body, our research points to an important means by which the immune system is regulated by both therapies and the hormonal system," Penn said. "From an asthma management standpoint, these studies further emphasize the need to include anti-inflammatory corticosteroids when treating moderate to severe asthma."

The researchers also uncovered the mechanism which by beta-agonists increased type 2 T cells. They found that the beta-agonists were unable to effectively stimulate the enzyme protein kinase A (PKA). Other molecules similar to beta-agonists that were able to strongly activate PKA also inhibited the ability of type 2 T cells to proliferate and survive. Penn said this finding could influence future drug development, because new beta agonists that are more effective in activating PKA may prove useful.

Karen Richardson | EurekAlert!
Further information:

Further reports about: Asthma Disease T cells beta-agonist

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>