Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests beta agonists may alter the immune system

20.11.2006
New research at Wake Forest University School of Medicine suggests that certain inhaled asthma medications – as well as similar chemicals our bodies produce during times of high stress – may worsen diseases such as asthma, heart failure and lupus that involve inflammation.

The scientific team led by Raymond Penn, Ph.D., and Matthew Loza, Ph.D, found that beta-agonists, such as those used in the treatment of asthma, increase the accumulation of type 2 T cells, a type of white blood cell that participates in immune system defense mechanisms. In certain diseases such as asthma and lupus, an over-reactive type 2 T cell response occurs and is believed to contribute to the disease.

"Inhaled beta-agonists are very effective in opening up airways and allowing asthmatics to breathe, but their ability to address the underlying inflammation that causes most asthma has been debated for years," said Penn, an associate professor in the Department of Internal Medicine and the Center for Human Genomics.

The research is reported on-line in the Journal of Allergy and Clinical Immunology and will be published in an upcoming print issue.

... more about:
»Asthma »Disease »T cells »beta-agonist

In fact, numerous clinical studies have reported that asthma symptoms tend to worsen over time in patients on continuous beta-agonist therapy. Although the reasons for this deterioration of asthma control are not clear, the Food and Drug Administration now recommends that the treatment of asthma with long-acting beta-agonists be supplemented with inhaled anti-inflammatory medications.

Using blood samples from human participants, the scientists measured the effect of beta-agonists on white blood cells that were grown in the laboratory. They were surprised to find that the drugs promoted a preferential accumulation of type 2 T cells.

Beta-agonists belong to a class of chemicals that include the hormone adrenaline produced by the body. Consequently, conditions that elevate blood adrenaline, such as emotional stress or heart failure, may also have the ability to alter the immune system by increasing type 2 T cells, and thereby promote or worsen disease.

"Although further research is needed to confirm that these findings occur in the human body, our research points to an important means by which the immune system is regulated by both therapies and the hormonal system," Penn said. "From an asthma management standpoint, these studies further emphasize the need to include anti-inflammatory corticosteroids when treating moderate to severe asthma."

The researchers also uncovered the mechanism which by beta-agonists increased type 2 T cells. They found that the beta-agonists were unable to effectively stimulate the enzyme protein kinase A (PKA). Other molecules similar to beta-agonists that were able to strongly activate PKA also inhibited the ability of type 2 T cells to proliferate and survive. Penn said this finding could influence future drug development, because new beta agonists that are more effective in activating PKA may prove useful.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Asthma Disease T cells beta-agonist

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>