Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Tribbles” Protein Implicated in Common and Aggressive Form of Leukemia

20.11.2006
Researchers at the University of Pennsylvania School of Medicine have identified a new protein associated with acute myelogenous leukemia (AML).

Several lines of evidence point to a protein called Tribbles, named after the furry creatures that took over the starship Enterprise in the original "Star Trek" series. Tribbles was first described in fruit flies.

“Tribbles had never been directly linked to human malignancy,” says senior author Warren S. Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine. “This is a new protein to human cancer and has a specific and overwhelming effect when expressed in hematopoietic stem cells, the cell type that gives rise to all elements of the blood.”

Three lines of evidence implicate Tribbles in AML. First, all mice engineered to express Tribbles-2 (Trib-2) in hematopoietic stem cells developed AML. They also found that Trib-2 inhibited C/EBPá, another protein that is frequently mutated in AML patients. Additionally, expression of the Tribbles protein was elevated in blood samples from AML patients, further suggesting that it contributes to AML. Overall, the findings suggest that Tribbles induces AML by inactivating the C/EBPá protein. The results were published in this week’s issue of Cancer Cell.

... more about:
»AML »Tribbles »defect »degradation »white blood cell

AML is a malignancy that arises in white blood cells and develops when there is a defect in immature immune cells in the bone marrow. In AML, the uncontrolled, exaggerated growth and accumulation of white blood cells leads to anemia and a deficiency of normal white cells in the blood. AML is the most common type of leukemia in adults, with an estimated 10,100 new cases reported each year.

Pear, also a researcher in the Abramson Family Cancer Research Institute at Penn; first author and postdoctoral fellow Karen Keeshan, PhD; and colleagues found Tribbles by chance when looking for the molecular partners of another protein called Notch. Notch is a molecular switch of sorts, activating gene transcription in the nucleus of many types of cells, and depending on the biochemical context, turns certain pathways on and others off.

Pear and colleagues knew from fruit fly studies that the Tribbles protein was linked to cell growth and cell-fate determination and is closely related to the Tribbles gene in mammals. In fact, Tribbles is so named because, when mutated in flies, it causes cells to proliferate uncontrollably.

Accumulating evidence from several groups shows that Tribbles functions as a scaffold to bring together a complex that mediates protein degradation. Protein degradation is required for normal cellular function; however, data from the Pear lab suggests that mistakes in the expression of the Tribbles gene may lead to degradation of proteins that hold cancer in check, such as tumor suppressors. “One of our current challenges is to determine what other proteins Tribbles degrades to cause leukemia,” says Pear.

The findings in mice were also validated in a large database of human cancer patients. In a survey of gene expression in AML patients, high Tribbles expression was found in a subset of patients who had been previously characterized by defects in C/EBPá.

According to Keeshan, “C/EBPá defects have also been identified in lung cancer and other tumors, suggesting the possibility that Trib2 dysregulation may be identified in other tumors. Furthermore, linking Trib2 to human cancer adds further support to the notion that targeting the protein degradation machinery will be a useful strategy in treating malignancy.”

This work was funded by the National Institutes of Health, the Leukemia and Lymphoma Society, and the Damon Runyon Cancer Research Foundation. Co-authors, in addition to Pear and Keeshan, are Yiping He, Olga Shestova, Lanwei Xu, Hong Sai, Carlos G. Rodriquez, Ivan Maillard, John W. Tobias, and Martin Carroll, all from Penn, along with Bas J. Wouters, Peter Valk, and Ruud Delwei from Erasmus Medical Center (Rotterdam, Netherlands) and Jon C. Aster, Brigham and Women’s Hospital (Boston).

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: AML Tribbles defect degradation white blood cell

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>