Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Tribbles” Protein Implicated in Common and Aggressive Form of Leukemia

20.11.2006
Researchers at the University of Pennsylvania School of Medicine have identified a new protein associated with acute myelogenous leukemia (AML).

Several lines of evidence point to a protein called Tribbles, named after the furry creatures that took over the starship Enterprise in the original "Star Trek" series. Tribbles was first described in fruit flies.

“Tribbles had never been directly linked to human malignancy,” says senior author Warren S. Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine. “This is a new protein to human cancer and has a specific and overwhelming effect when expressed in hematopoietic stem cells, the cell type that gives rise to all elements of the blood.”

Three lines of evidence implicate Tribbles in AML. First, all mice engineered to express Tribbles-2 (Trib-2) in hematopoietic stem cells developed AML. They also found that Trib-2 inhibited C/EBPá, another protein that is frequently mutated in AML patients. Additionally, expression of the Tribbles protein was elevated in blood samples from AML patients, further suggesting that it contributes to AML. Overall, the findings suggest that Tribbles induces AML by inactivating the C/EBPá protein. The results were published in this week’s issue of Cancer Cell.

... more about:
»AML »Tribbles »defect »degradation »white blood cell

AML is a malignancy that arises in white blood cells and develops when there is a defect in immature immune cells in the bone marrow. In AML, the uncontrolled, exaggerated growth and accumulation of white blood cells leads to anemia and a deficiency of normal white cells in the blood. AML is the most common type of leukemia in adults, with an estimated 10,100 new cases reported each year.

Pear, also a researcher in the Abramson Family Cancer Research Institute at Penn; first author and postdoctoral fellow Karen Keeshan, PhD; and colleagues found Tribbles by chance when looking for the molecular partners of another protein called Notch. Notch is a molecular switch of sorts, activating gene transcription in the nucleus of many types of cells, and depending on the biochemical context, turns certain pathways on and others off.

Pear and colleagues knew from fruit fly studies that the Tribbles protein was linked to cell growth and cell-fate determination and is closely related to the Tribbles gene in mammals. In fact, Tribbles is so named because, when mutated in flies, it causes cells to proliferate uncontrollably.

Accumulating evidence from several groups shows that Tribbles functions as a scaffold to bring together a complex that mediates protein degradation. Protein degradation is required for normal cellular function; however, data from the Pear lab suggests that mistakes in the expression of the Tribbles gene may lead to degradation of proteins that hold cancer in check, such as tumor suppressors. “One of our current challenges is to determine what other proteins Tribbles degrades to cause leukemia,” says Pear.

The findings in mice were also validated in a large database of human cancer patients. In a survey of gene expression in AML patients, high Tribbles expression was found in a subset of patients who had been previously characterized by defects in C/EBPá.

According to Keeshan, “C/EBPá defects have also been identified in lung cancer and other tumors, suggesting the possibility that Trib2 dysregulation may be identified in other tumors. Furthermore, linking Trib2 to human cancer adds further support to the notion that targeting the protein degradation machinery will be a useful strategy in treating malignancy.”

This work was funded by the National Institutes of Health, the Leukemia and Lymphoma Society, and the Damon Runyon Cancer Research Foundation. Co-authors, in addition to Pear and Keeshan, are Yiping He, Olga Shestova, Lanwei Xu, Hong Sai, Carlos G. Rodriquez, Ivan Maillard, John W. Tobias, and Martin Carroll, all from Penn, along with Bas J. Wouters, Peter Valk, and Ruud Delwei from Erasmus Medical Center (Rotterdam, Netherlands) and Jon C. Aster, Brigham and Women’s Hospital (Boston).

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: AML Tribbles defect degradation white blood cell

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>