Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical exchanges show wasps are bad losers

Wasps have more than just a sting in their tail according to new research published this week in the Proceedings of the Royal Society B, they also carry the insect version of pepper spray in their heads, which they can release when fighting other wasps. The research not only gives us a fascinating insight into insect behaviour but could also help us to use wasps to kill crop destroying pests.

For the first time scientists, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), have recorded 'chemical exchanges' undetectable by the human nose which take place between females of a species of bethylid wasp - Goniozus legneri, when they fight over larvae on which they lay their eggs. Not only have they discovered that chemical exchanges take place, but also that it is always the losing wasp that releases the potent gas.

While the research was primarily aimed at improving the understanding of animal behaviour, lead researcher Dr Ian Hardy, from the University of Nottingham, explains that there is great potential for applied spin-offs: "Bethylid wasps kill the larvae of many insects that are pests of crops, such as almonds, coffee and coconut, ruining harvests and costing industry thousands of pounds. These wasps could be used as a cheap and effective biological control to kill the larvae, avoiding the use of expensive and polluting pesticides. But for successful biological control, we need a good knowledge of wasp behaviour, including how wasps from the same and different species interact. Understanding these patterns can inform us of the best combinations of species to release against a given crop pest."

The scientists staged 47 separate contests between pairs of female wasps, placing them in a transparent chamber with a larva, which in the wild they paralyse to use as a host to lay their eggs on. One 'owner' female had paralysed the host 24 hours before the other wasp was allowed to intrude.

... more about:
»Chemical »WASP »insect »larva

Making new use of a real-time chemical analysis technique known as Atmospheric Pressure Chemical Ionisation Mass Spectrometry (APCI-MS), as well as recording wasp behaviour on video, the researchers were able to study the visible and chemical behaviour of the wasps in tandem.

Behaviours displayed by the wasps included chasing, biting, stinging and full-on fighting. The video and chemical analysis showed that a volatile chemical, which is a type of spiroacetal, was released by the wasps when losing a particularly aggressive fight.

Dr Hardy said: "Our research suggests that wasps which have lost a fight release spiroacetal to temporarily and partially incapacitate the winner, it could be likened to the insect version of pepper spray. The volatile chemicals released by the wasps may prompt females to disperse away from the target area. If we understand how to reduce chemical release behaviour we can improve the efficacy of these wasps in pest control".

Professor Julia Goodfellow, BBSRC Chief Executive, said: "This research highlights the benefits of understanding animal behaviour and the impact this can have on finding solutions to tackle costly problems such as pest control."

The research is being published in the print edition of the Proceedings of the Royal Society B on Wednesday.

Matt Goode | alfa
Further information:

Further reports about: Chemical WASP insect larva

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>