Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periwinkle can serve as tiny chemical plant

17.11.2006
Researchers enhance periwinkle plant's biochemical pathways

MIT researchers have discovered a way to manipulate the chemistry taking place in the tiny periwinkle plant to produce novel compounds that could have pharmacological benefits.

"Plants are really nature's best chemists," says Sarah O'Connor, the Latham Family Career Development Assistant Professor of Chemistry and co-author of a paper on the work in the Journal of the American Chemical Society.

O'Connor and chemistry graduate student Elizabeth McCoy decided to explore the periwinkle plant in part because it is the only plant that produces vinblastine, a drug widely used to treat cancers such as Hodgkin's lymphoma.

... more about:
»McCoy »pathway »produce »vinblastine

The biochemical pathway that produces vinblastine and other alkaloid compounds is long and complicated, usually requiring at least 10 enzymatic steps, which occur in different parts of the periwinkle plant (also known as Catharanthus roseus).

O'Connor and McCoy essentially tricked the plants into producing new compounds by feeding them slightly altered versions of the normal starting materials (tryptamines) for alkaloid synthesis.

"You can make a great number of modifications of simple starting materials, and the plants incorporate those starting materials into the biosynthetic pathway," said O'Connor.

Alkaloids are believed to have a protective function for plants because they are toxic to bacteria and herbivores who try to eat the plants. This theory is bolstered by the fact that the reaction products move closer to the plant surface as they move through the biosynthetic pathway, said McCoy.

Vinblastine, which has been used as a cancer drug since the 1960s, is very difficult to isolate from the periwinkle plant because it is produced in minute quantities (the yield is about 0.002 percent of the plant's weight). However, it would be even more difficult (and expensive) to synthesize vinblastine in the laboratory.

"It's a beautiful and elegant synthesis, but it's not cost-effective, so industry does not currently use synthesis to make vinblastine," said O'Connor.

Other researchers are now running clinical trials for artificial analogues of vinblastine, so it could be beneficial if periwinkle plants could be induced to synthesize those same compounds or new compounds that might be even more effective.

Because it is easier to make modifications to the starting materials than the end product, the researchers' method could produce a diverse array of alkaloids to test for potential drug activity. "You can only make a limited number of modifications to natural products that are already synthesized," O'Connor said.

In their recent paper, the researchers describe 18 new products, but there are many more possibilities. "There's no end to what you could do to modify the starting materials," said McCoy.

Scientists often engineer bacteria and yeast to produce desired compounds, such as antibiotics, but few have tried it with plants, because their biochemistry is so complex.

"Plants are the hardest to work with, so people have avoided looking at plant biosynthetic pathways," O'Connor said.

The research is funded by the Smith Family Medical Foundation, 3M, the Beckman Foundation, the American Cancer Society and the American Chemical Society.

--Written by Anne Trafton, MIT News Office--

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: McCoy pathway produce vinblastine

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>