Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly plant bug sequenced

31.01.2002


Researchers grapple with wilt-causing bacteria


Southern wilt affects more than 200 species around the world.
© D. Gay


An infected cutting. The microbe can wipe out entire fields.
© D. Gay



It’s the Mike Tyson of plant bacteria," says Gerry Saddler, of the Scottish Agricultural Science Agency, Edinburgh.

Saddler is referring to Ralstonia solanacearum, the cause of southern bacterial wilt possibly the most important plant disease in the world. French researchers have now sequenced the bacteria’s genome - information that should lead to a better understanding of plant disease, and perhaps new ways to fight it1.


Southern wilt or brown rot affects more than 200 species around the world, including potatoes, bananas, mulberry trees and ginger. Entering plants through their roots, Ralstonia mounts a deadly assault on their fluid and nutrient transport networks.

The bacterium’s genome sequence gives some clues to its versatility. An unusually large number of genes enable it to attach to plant cells and inject them with its proteins. It may use different genes on different host species.

Finding the plant molecules that these two processes latch onto, "might allow us to engineer resistant varieties," says Christian Boucher of the National Agronomic Research Institute in Toulouse who led the sequencing project.

The genome should also provide insight into many other plant diseases that employ similar infection strategies. "It’ll revolutionize molecular plant pathology," says plant biologist James Alfano of the University of Nebraska, Lincoln.

Off switch

Knowing the genes that cause disease might also allow us to switch them off. Ralstonia can do this itself, and live in plants without harming them.

Julian Smith, of CABI Bioscience in Egham, England, is trying to engineer benign forms of the bacterium with which to inoculate plants against the lethal form. Early results are promising, and the team has permission, but not funds, to run trials in Kenya and South Africa.

Other potential routes of attack are the genes that Ralstonia use to make chemicals to kill each other, says Smith. Engineering these into potato plants "could have enormous applications", he says.

Rotten luck

At present there is little we can do to combat Ralstonia aside from try to prevent its spread. Conventional plant breeding has largely failed to create resistant crops - perhaps because the bacterium uses many genes to bring about disease. The bug’s wide host range and ability to survive in the soil for several years makes it difficult to evade by crop rotation.

The microbe can wipe out entire fields. In parts of Florida, for example, it has killed 75% of the potato crop. "Fields got so heavily infested that people abandoned them," says plant pathologist Tim Denny of the University of Georgia, Athens.

Ralstonia prefers warm weather, but a cold-tolerant strain from Andean potatoes reached Europe and North America in the 1990s. This strain can spread via rivers and has since infected wild plants, where it does no harm.

Seed-potato distribution is now tightly monitored. "People are very concerned that the pathogen might escape," says Denny. Global warming might be aiding its spread.

References


  1. Salanoubat, M. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497 - 502, (2002).


JOHN WHITFIELD | Nature News Service

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>