Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly plant bug sequenced

31.01.2002


Researchers grapple with wilt-causing bacteria


Southern wilt affects more than 200 species around the world.
© D. Gay


An infected cutting. The microbe can wipe out entire fields.
© D. Gay



It’s the Mike Tyson of plant bacteria," says Gerry Saddler, of the Scottish Agricultural Science Agency, Edinburgh.

Saddler is referring to Ralstonia solanacearum, the cause of southern bacterial wilt possibly the most important plant disease in the world. French researchers have now sequenced the bacteria’s genome - information that should lead to a better understanding of plant disease, and perhaps new ways to fight it1.


Southern wilt or brown rot affects more than 200 species around the world, including potatoes, bananas, mulberry trees and ginger. Entering plants through their roots, Ralstonia mounts a deadly assault on their fluid and nutrient transport networks.

The bacterium’s genome sequence gives some clues to its versatility. An unusually large number of genes enable it to attach to plant cells and inject them with its proteins. It may use different genes on different host species.

Finding the plant molecules that these two processes latch onto, "might allow us to engineer resistant varieties," says Christian Boucher of the National Agronomic Research Institute in Toulouse who led the sequencing project.

The genome should also provide insight into many other plant diseases that employ similar infection strategies. "It’ll revolutionize molecular plant pathology," says plant biologist James Alfano of the University of Nebraska, Lincoln.

Off switch

Knowing the genes that cause disease might also allow us to switch them off. Ralstonia can do this itself, and live in plants without harming them.

Julian Smith, of CABI Bioscience in Egham, England, is trying to engineer benign forms of the bacterium with which to inoculate plants against the lethal form. Early results are promising, and the team has permission, but not funds, to run trials in Kenya and South Africa.

Other potential routes of attack are the genes that Ralstonia use to make chemicals to kill each other, says Smith. Engineering these into potato plants "could have enormous applications", he says.

Rotten luck

At present there is little we can do to combat Ralstonia aside from try to prevent its spread. Conventional plant breeding has largely failed to create resistant crops - perhaps because the bacterium uses many genes to bring about disease. The bug’s wide host range and ability to survive in the soil for several years makes it difficult to evade by crop rotation.

The microbe can wipe out entire fields. In parts of Florida, for example, it has killed 75% of the potato crop. "Fields got so heavily infested that people abandoned them," says plant pathologist Tim Denny of the University of Georgia, Athens.

Ralstonia prefers warm weather, but a cold-tolerant strain from Andean potatoes reached Europe and North America in the 1990s. This strain can spread via rivers and has since infected wild plants, where it does no harm.

Seed-potato distribution is now tightly monitored. "People are very concerned that the pathogen might escape," says Denny. Global warming might be aiding its spread.

References


  1. Salanoubat, M. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497 - 502, (2002).


JOHN WHITFIELD | Nature News Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>