Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm proteome gives “tantalising glimpse” towards the origin of sex

13.11.2006
The first ever catalogue of the different types of proteins found in sperm could help reveal the origins of sex and explain some of the mysteries of infertility, say scientists.

Research published in Nature Genetics today describes 381 proteins present in sperm of the fruit fly, Drosophila melanogaster. Whilst more proteins may be identified as research progresses, this study marks the first substantial ’whole-cell’ characterisation of the protein components of a higher eukaryotic cell (a cell in which all the genetic components are contained within a nucleus).

This so-called ‘proteome’ contains everything the sperm needs to survive and function correctly, and scientists can use it to investigate the factors that make some sperm more successful than others.

Around half of the genes of the fruit fly sperm proteome have comparable versions in humans and mice, making it a useful model for studying male infertility in mammals.

... more about:
»Drosophila »Protein »Sex »fruit fly »proteome

By comparing the sperm proteome of the fruit fly with other species, scientists will also be able to rewind evolution and work out the core sperm proteome – the most basic constituents a sperm needs for sexual reproduction. This will shed light on how sex itself evolved.

“This is the first catalogue of sperm proteins for any organism, and it offers a tantalising glimpse into how we might begin to answer some of biology’s most fundamental questions,” said Dr Tim Karr from the University of Bath who led the study.

“Amazingly we know very little about what is in a sperm, which probably explains why we don’t really understand sex, let alone how it evolved.

“Before we catalogued the sperm proteome, we only knew a few specific proteins in the Drosophila sperm.

“Being able to compare the structure and content of the proteomes of sperm from different species should help us understand the evolution and origin of sperm.

“We now know of at least 381, which is a greater than 50-fold increase in our knowledge base. Now that we have identified them, we should be able to study the function of all of these.”

Proteins carry out an immense range of functions, from forming structural materials to catalysing chemical reactions, so knowing exactly what proteins are in sperm is a great step forward in understanding.

The research involved purifying fruit fly sperm and developing methods to study their protein content. Previous estimates for the protein content of sperm were based on counts of proteins separated into ‘spots’ on a special gel matrix. However, these only identify the total number of proteins in sperm – rather than identifying the specific identity of each protein constituent

“The sperm proteome provides a basis for studying the critical functional components of sperm required for motility, fertilisation and possibly early embryo development,” said Dr Steve Dorus, also from the University of Bath, who collaborated with Dr Karr on the project.

“It should be a valuable tool in the study of infertility as more targeted studies can now be established in model organisms.

“Furthermore, having a comprehensive catalogue of proteins to compare between different species will reveal how natural selection has impacted sperm evolution.

“We can start to look for the ‘core’ sperm proteome - that is, the most basic required constituents of sperm. This will not only shed light on the evolutionary origins of sperm, but may advance our understanding of the evolution of sex itself.”

The research will also help further our understanding of sperm competition – the attributes within a sperm that make one sperm more successful at reaching and fertilising the egg than its peers.

“This question of sperm competition has baffled scientists for years,” said Dr Karr.

“If we can work out what makes one sperm more successful than another, we might be able to apply this knowledge to clinical therapies for the treatment of sperm that are not functioning properly.”

The findings are particularly timely as a variety of research is beginning to highlight the increasingly important role of sperm.

Scientists are discovering that as well as carrying the DNA that spells out the male’s contribution to a new life, sperm carries RNA and proteins which have a direct influence on fertilisation and embryo development.

Professor Geoff Parker, Derby Professor of Zoology at the University of Liverpool, said: "This paper provides a remarkable, pioneering analysis of the molecular basis of sperm form and function by identifying 381 proteins of the Drosophila melanogaster sperm proteome, including mitochondrial, metabolic and cytoskeletal proteins.

“Their work has great relevance to current debate on the evolutionary underpinnings of sperm characteristics, and may have application to mammalian sperm function. The Drosophila sperm proteins show substantial homology with the axoneme accessory structure of mouse sperm.”

Professor Manyuan Long, Professor of Genetics & Evolution at the University of Chicago, said: “This is a milestone in the understanding of genomic distribution of male specific proteins. I marvel at their tremendous efforts and great successes.”

The research is funded by the Royal Society and the National Science Foundation with additional support from the Biotechnology & Biological Sciences Research Council and the National Institutes of Health.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/articles/releases/spermproteome121106.html

Further reports about: Drosophila Protein Sex fruit fly proteome

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>