Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm proteome gives “tantalising glimpse” towards the origin of sex

13.11.2006
The first ever catalogue of the different types of proteins found in sperm could help reveal the origins of sex and explain some of the mysteries of infertility, say scientists.

Research published in Nature Genetics today describes 381 proteins present in sperm of the fruit fly, Drosophila melanogaster. Whilst more proteins may be identified as research progresses, this study marks the first substantial ’whole-cell’ characterisation of the protein components of a higher eukaryotic cell (a cell in which all the genetic components are contained within a nucleus).

This so-called ‘proteome’ contains everything the sperm needs to survive and function correctly, and scientists can use it to investigate the factors that make some sperm more successful than others.

Around half of the genes of the fruit fly sperm proteome have comparable versions in humans and mice, making it a useful model for studying male infertility in mammals.

... more about:
»Drosophila »Protein »Sex »fruit fly »proteome

By comparing the sperm proteome of the fruit fly with other species, scientists will also be able to rewind evolution and work out the core sperm proteome – the most basic constituents a sperm needs for sexual reproduction. This will shed light on how sex itself evolved.

“This is the first catalogue of sperm proteins for any organism, and it offers a tantalising glimpse into how we might begin to answer some of biology’s most fundamental questions,” said Dr Tim Karr from the University of Bath who led the study.

“Amazingly we know very little about what is in a sperm, which probably explains why we don’t really understand sex, let alone how it evolved.

“Before we catalogued the sperm proteome, we only knew a few specific proteins in the Drosophila sperm.

“Being able to compare the structure and content of the proteomes of sperm from different species should help us understand the evolution and origin of sperm.

“We now know of at least 381, which is a greater than 50-fold increase in our knowledge base. Now that we have identified them, we should be able to study the function of all of these.”

Proteins carry out an immense range of functions, from forming structural materials to catalysing chemical reactions, so knowing exactly what proteins are in sperm is a great step forward in understanding.

The research involved purifying fruit fly sperm and developing methods to study their protein content. Previous estimates for the protein content of sperm were based on counts of proteins separated into ‘spots’ on a special gel matrix. However, these only identify the total number of proteins in sperm – rather than identifying the specific identity of each protein constituent

“The sperm proteome provides a basis for studying the critical functional components of sperm required for motility, fertilisation and possibly early embryo development,” said Dr Steve Dorus, also from the University of Bath, who collaborated with Dr Karr on the project.

“It should be a valuable tool in the study of infertility as more targeted studies can now be established in model organisms.

“Furthermore, having a comprehensive catalogue of proteins to compare between different species will reveal how natural selection has impacted sperm evolution.

“We can start to look for the ‘core’ sperm proteome - that is, the most basic required constituents of sperm. This will not only shed light on the evolutionary origins of sperm, but may advance our understanding of the evolution of sex itself.”

The research will also help further our understanding of sperm competition – the attributes within a sperm that make one sperm more successful at reaching and fertilising the egg than its peers.

“This question of sperm competition has baffled scientists for years,” said Dr Karr.

“If we can work out what makes one sperm more successful than another, we might be able to apply this knowledge to clinical therapies for the treatment of sperm that are not functioning properly.”

The findings are particularly timely as a variety of research is beginning to highlight the increasingly important role of sperm.

Scientists are discovering that as well as carrying the DNA that spells out the male’s contribution to a new life, sperm carries RNA and proteins which have a direct influence on fertilisation and embryo development.

Professor Geoff Parker, Derby Professor of Zoology at the University of Liverpool, said: "This paper provides a remarkable, pioneering analysis of the molecular basis of sperm form and function by identifying 381 proteins of the Drosophila melanogaster sperm proteome, including mitochondrial, metabolic and cytoskeletal proteins.

“Their work has great relevance to current debate on the evolutionary underpinnings of sperm characteristics, and may have application to mammalian sperm function. The Drosophila sperm proteins show substantial homology with the axoneme accessory structure of mouse sperm.”

Professor Manyuan Long, Professor of Genetics & Evolution at the University of Chicago, said: “This is a milestone in the understanding of genomic distribution of male specific proteins. I marvel at their tremendous efforts and great successes.”

The research is funded by the Royal Society and the National Science Foundation with additional support from the Biotechnology & Biological Sciences Research Council and the National Institutes of Health.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/articles/releases/spermproteome121106.html

Further reports about: Drosophila Protein Sex fruit fly proteome

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>