Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy inhibits epilepsy in animals

Altering signaling pathways may be potential approach to therapy

For the first time, researchers have inhibited the development of epilepsy after a brain insult in animals. By using gene therapy to modify signaling pathways in the brain, neurology researchers found that they could significantly reduce the development of epileptic seizures in rats.

"We have shown that there is a window to intervene after a brain insult to reduce the risk that epilepsy will develop," said one of the lead researchers, Amy R. Brooks-Kayal, M.D., a pediatric neurologist at The Children's Hospital of Philadelphia and associate professor of Neurology and Pediatrics at the University of Pennsylvania School of Medicine. "This provides a 'proof of concept' that altering specific signaling pathways in nerve cells after a brain insult or injury could provide a scientific basis for treating patients to prevent epilepsy."

Dr. Brooks-Kayal and Shelley J. Russek, Ph.D., of Boston University School of Medicine were senior authors of the study in the Nov. 1 Journal of Neuroscience.

... more about:
»Brooks-Kayal »Epilepsy »alpha1 »seizure »subunit

Working in a portion of the brain called the dentate gyrus, the researchers focused on one type of cell receptor, type A receptors, for the neurotransmitter gamma-aminobutyric acid (GABA). When GABA(A) receptors are activated, they inhibit the repetitive, excessive firing of brain cells that characterizes a seizure. Seizures are thought to occur, at least in part, because of an imbalance between two types of neurotransmitters: the glutamate system, which stimulates neurons to fire, and the GABA system, which inhibits that brain activity.

GABA's inhibitory role is considered particularly important in the dentate gyrus because the dentate gyrus acts as a gateway for brain activity into the hippocampus, an area that is critical to generating seizures in temporal lobe epilepsy, the most common type of epilepsy in children and adults.

GABA(A) receptors are made up of five subunits--proteins that play important roles in brain development and in controlling brain activity. Previous animal research by Dr. Brooks-Kayal's group had found that rats with epilepsy had lower levels of the alpha1 subunits of these receptors and higher levels of alpha4 subunits. Therefore, the researchers used gene delivery to alter the expression of the alpha1 subunit to see if this would have an effect on later seizure development.

To carry the gene that alters the expression of the protein, they used an adeno-associated virus vector, injected into the rats' brains. The researchers later injected the rats with pilocarpine, a drug that causes status epilepticus (SE), a convulsive seizure, shortly after injection.

They then evaluated the rats for later development of spontaneous seizures or epilepsy, which usually occurs after an initial SE injury. Rats that had received the gene therapy had elevated levels of alpha1 proteins and either did not develop spontaneous seizures, or took three times as long to experience a spontaneous seizure, compared to rats that did not receive the delivered gene.

In this short-term study, said Dr. Brooks-Kayal, it was impossible to tell whether the increased alpha1 subunit levels were only suppressing seizures or whether they would permanently prevent epilepsy from developing.

"In people, an initial episode of SE or an injury such as severe head trauma is known to raise the risk of later developing epilepsy, so this study suggests that strategies aimed at modifying signaling pathways in the brain after such an insult may help prevent epilepsy," said Dr. Brooks-Kayal. "The approach would likely be different than in this proof-of-concept animal study that involved injecting agents directly into the brain. This study, does, however, lay the foundation for a potential drug therapy that might act on the same signaling pathways, to prevent epilepsy after a brain insult such as an episode of SE."

John Ascenzi | EurekAlert!
Further information:

Further reports about: Brooks-Kayal Epilepsy alpha1 seizure subunit

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>