Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists harness diptheria toxin and interleukin 2 to help the immune system attack melanoma in humans ...

10.11.2006
... phase II trial continues

Researchers investigating ways of prompting the immune system to recognise and kill tumour cells have found that a drug containing parts of the diptheria toxin appears to work well in patients with advanced melanoma (skin cancer).

In the first part of a phase II clinical trial to test the drug denileukin diftitox (also known as DAB(389)IL2 or ONTAK) in melanoma, five out of seven patients with stage IV disease experienced significant regression or stabilisation of both tumours and metastases. The two other patients in whom the disease progressed were on a lower dose of the drug. All the patients are still alive after 12 months.

Dr Jason Chesney, associate director for translational research at the JG Brown Cancer Center, University of Louisville, Kentucky, USA, told a news briefing at the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Thursday 9 November): “We are seeing some exciting results in stage IV melanoma patients whose median life expectancy is normally only about eight months. The phase II trial is continuing to examine the efficacy of denileukin diftitox in patients with melanoma.”

The immune system that attacks cancer cells in humans depends on a balance between T cells, which specifically recognise and attack antigens such as tumour cells, and suppressive or regulatory T cells (Tregs), which turn off activated immune cells in order to prevent autoimmunity.

Dr Chesney explained: “Recently a subset of regulatory T cells has been found to directly suppress the activation of the anti-tumour T cells, but it was also discovered that, if the Tregs were depleted by targeting them with denileukin diftitox, then particular T cells in the immune system known as CD8+ T lymphocytes were able to attack and kill the melanoma cells in mice.”

Denileukin diftitox is a fusion protein made up of amino acid sequences for the diptheria toxin and the T cell growth factor, interleukin 2 (IL2). It targets Tregs that have IL2 receptors on their cell surface, and it binds to part of the receptor called CD25. Once it reaches the inside of the cell it prevents protein synthesis, which leads to cell death within hours.

“We thought that if denileukin diftitox could selectively deplete Tregs in patients with melanoma, this would allow the CD8+ T cells to do their job of recognising and attacking the melanoma cells,” said Dr Chesney.

Dr Chesney and his colleagues gave seven patients with stage IV melanoma nine or twelve micrograms per kilogram of body weight daily for four days, every three weeks for four cycles. The two patients on the lower dose had newly detectable tumours and tumour growth after two cycles. However, the five patients on the higher dose experienced significant regression of several metastatic tumours after four cycles, including subcutaneous tumours and metastases in the liver and lymph nodes.

One patient had two tumours on the leg that had died and became infected, requiring surgery. When the researchers examined the tumour tissue they found that it was surrounded by CD8+ T lymphocytes. “This meant that the lymphocytes had been successfully activated to attack the tumour, which consequently had died. We also found that the concentration of Tregs in this patient decreased by more than a half after the second day’s dose of denileukin diftitox,” said Dr Chesney.

“To our knowledge, this is the only trial to study the effects of Treg depletion in human cancer patients. From the results, we conclude that depleting Treg cells in patients with melanoma may allow the immune system to be activated successfully to kill cancer cells. These patients have survived longer than the median average life expectancy of a patient with stage IV melanoma.

“We also believe that, in the future, immunotherapies that depend on depleting Treg cells may prove to be useful in all types of cancer.”

1.EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

2.Incidence of melanoma has risen significantly in the past decade and now affects about one in 74 people in the USA. In 2006 it is expected to kill 41,000 people worldwide.

Emma Mason | alfa
Further information:
http://www.eortc.org

Further reports about: Chesney T cells TREG denileukin diftitox diptheria melanoma tumour

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>