Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in small sea life yield new way to make potential cancer drugs

07.11.2006
Manipulating chemicals made by genetic pathways

Researchers led by a University of Utah medicinal chemist have developed a novel method to make drugs for cancer and other diseases from bacteria found in sponges and other small ocean creatures.

In a study published Sunday, Nov. 5, in Nature Chemical Biology online, researchers examined symbiotic bacteria that live only in sea squirts and other marine life. These bacteria are responsible for making a wealth of chemicals, which accumulate in the tissues of sea squirts and may help to defend them against predators. Many of these chemicals have anticancer properties, but harvesting them in quantities for large-scale testing and production has been impractical.

The new method uses genetic pathways in the bacteria to produce the small chemicals and to manipulate them to invent new potential drugs. The ability to make these chemicals in the laboratory opens myriad possibilities for developing drugs to fight cancer, HIV, and other diseases, according to Eric W. Schmidt, Ph.D., assistant professor of medicinal chemistry at the University of Utah College of Pharmacy and senior author on the study.

... more about:
»Genetic »diseases »small

"This represents a new way of attacking the problem," Schmidt said. "We're hoping we can use this to find a way to make natural molecules of compounds through single mutations in DNA."

To synthesize natural compounds, researchers have traditionally made them in the lab using labor-intensive routes. More recently, researchers have begun to use genes to make small molecules within laboratory strains of bacteria. This genetic synthesis method is complicated because it's still difficult to understand how changing genes can lead to changes in small drug molecules.

"The promise of genes is that you can access the tremendous natural diversity of the world's organisms to find new natural compounds for human health," Schmidt said. "You can also use genetic engineering to modify these compounds and invent new drugs to target human diseases."

Sea squirts live with diverse bacteria that synthesize many small molecules. By examining the natural chemical and genetic diversity found in sea squirts and their symbionts, Schmidt and his colleagues from around the country identified individual mutations responsible for changing from one compound to another. By mimicking this natural process, the researchers synthesized a completely new compound. This paves the way to the genetic creation of large chemical libraries for testing against human diseases.

"This proves the concept works," Schmidt said. "We can extract bacteria from animals, take DNA from the bacteria, and produce compounds."

Now that they've shown compounds can be synthesized from DNA, the researchers want to figure out how to produce greater quantities of compounds for testing and drug development. E. coli is a good producer of compounds, but yields are not yet practical.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: Genetic diseases small

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>