Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-nanotechnology to kill cancer cells

07.11.2006
The University of Surrey has been awarded a grant of £420,000 to utilize nanotechnology to develop cancer treatments. The grant is part of an international project: “Multifunctional Carbon Nanotubes for Biomedical Applications (CARBIO)” supported by the European Union under the Marie Curie scheme.

Carbon nanotubes have already found applications in engineering but so far any biological application has been hampered by their poor interaction with biological systems. The Surrey team has overcome this problem by wrapping DNA and RNA around carbon nanotubes making them biocompatible.

The aim of the project is to attach additional molecules to the RNA-wrapped carbon nanotubes to target them towards cancer cells. In combination with laser treatment the carbon nanotubes may then be used to kill the cancer cells. Although there is still a long way to go before any new drugs based on this technology are developed, the scientists hope that their work will eventually lead to more effective treatments for cancer.

The multidisciplinary project involves biologists, engineers and physicists from the University of Dresden in Germany, the University of Toulouse, France, the University of Linz, Austria, the University of Twente, The Netherlands and the University of Surrey. Further information is available from the CARBIO website http://www.carbio.eu/ . The work at Surrey is headed by Professor Johnjoe McFadden, Professor Ravi Silva, and Dr Helen Coley from the disciplines of Electronic Engineering, Biology and Medicine, respectively.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

Further reports about: Carbon Nanotubes carbon nanotubes

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

The “everywhere” protein: honour for the unravellor of its biology

19.10.2017 | Life Sciences

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>