Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Some Key Laboratory Breast Cancer Cell Lines Are, Indeed, Good Models for the "Real" Disease

In this era of molecular medicine, controversy among cancer researchers is increasing as to whether the laboratory cells they study -- and upon which human treatment is based -- accurately reflect the biology of “real” tumors growing in a person’s body.

Some argue that cancer cells that learn to live in a flat lab dish cannot reflect cancer in the body, but others say that without any other way to study cancer, they seem to have performed well.

Now, researchers at the Lombardi Comprehensive Cancer Center report in the December 2006 (available online November 1) issue of the International Journal of Oncology that the molecular profiles seen in a group of heavily used breast cancer laboratory cell lines significantly resemble those found in human tumors.

“We have provided an answer to this dispute, at least for cell lines that represent a majority of breast cancer cases,” said the study’s lead author, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics at Georgetown University Medical Center.

... more about:
»Cancer »Comprehensive »Lombardi »Molecular »Treatment

“Researchers -- and by extension, breast cancer patients -- can now have more confidence in these laboratory cell line models, which they use as a basis to understand the disease and design new therapies,” Clarke said.

The research team, which includes scientists from Scotland and Virginia, specifically found that three popular laboratory cultures of estrogen-sensitive breast cancer (which represents about 70 percent of the disease) share a very similar genetic profile to tumors extracted from human breasts.

The finding is important because breast cancer researchers are now using the long-existing laboratory cell lines to tease out the specific genes and proteins that are important to both development and treatment of the disease.

These lines (MCF-7, T47D, ZR-75-1) were created decades ago -- one is more than 30 years old -- from cells collected from the lungs of several unidentified women whose breast cancer had metastasized, Clarke said.

“The breast cancer had started growing in the lungs, and cells from the tumors shed into lung fluid, which was then collected,” Clarke said. These cell lines are “immortal” -- scientists can keep them growing for as long as needed, and the original population has been subdivided countless times.

But researchers have worried that this method of collection carried with it some flawed assumptions, such as the notion that because the cells had come from a tumor that had metastasized, they were also equally capable of spreading.

“We now know that is not accurate,” he said. “Cancer cells may metastasize as clumps, but not all the cells in these clumps are the same.” Separating cancer cells that spread from those that don’t is important in designing the most effective therapies, and in understanding the basic biology of the disease, according to Clarke.

And even if the breast cancer cells collected from lung fluid were capable of metastasizing, “in laboratory culture, they can lose those properties, because there is no selection pressure to retain the ability to spread,” he said. “Cells are stimulated by their environment, and those that grow on plastic won’t fully reflect what is growing in the breast.

“These cell line models can be misused if you expect them to offer biological insights into how breast cancer behaves. That is where it gets controversial,” Clarke said.

In the study, which used a new method to gauge molecular similarities between tumor cells, the scientists compared the three estrogen-receptor positive (ER+) laboratory cell lines with more than a dozen tumor biopsies that were flash frozen just after they were taken from a breast cancer patient.

They compared the cells’ “transcriptome,” the set of messenger RNA molecules being produced or active when the tissue was frozen. “This shows exactly which constellations of genes were in the process of making proteins,” he said. “This is the first time someone has looked at the question in this way, and we found the transcriptomes were not identical, but that they were surprisingly alike.”

They identified a group of 36 genes with an activation profile that was similar between the cell lines and the biopsy samples, and the researchers say that a number of these gene functions have been associated with treatment outcomes.

“The strong correlation we see between the respective transcriptomes clearly imply these laboratory cell lines are good models in which to identify molecular events that are important in some ER positive breast cancers,” Clarke said.

The study was funded in part by the United States Army Medical Research and Materiel Command Breast Cancer Research Program. Clarke’s co-authors include, from the Lombardi Comprehensive Cancer Center: Yuelin Zhu, M.D., Antai Wang, Ph.D., Minetta C. Liu, M.D., Alan Zwart, M.S., Richard Lee, Ph.D., and Ann Gallagher, R.N. Researchers from Virginia Polytechnic Institute and State University (Yue Wang, Ph.D.) and from the University of Edinburgh in Scotland (William R. Miller, Ph.D, J. Michael Dixon, M.D.) also contributed.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area.

Laura Cavender | EurekAlert!
Further information:

Further reports about: Cancer Comprehensive Lombardi Molecular Treatment

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>