Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Key Laboratory Breast Cancer Cell Lines Are, Indeed, Good Models for the "Real" Disease

06.11.2006
In this era of molecular medicine, controversy among cancer researchers is increasing as to whether the laboratory cells they study -- and upon which human treatment is based -- accurately reflect the biology of “real” tumors growing in a person’s body.

Some argue that cancer cells that learn to live in a flat lab dish cannot reflect cancer in the body, but others say that without any other way to study cancer, they seem to have performed well.

Now, researchers at the Lombardi Comprehensive Cancer Center report in the December 2006 (available online November 1) issue of the International Journal of Oncology that the molecular profiles seen in a group of heavily used breast cancer laboratory cell lines significantly resemble those found in human tumors.

“We have provided an answer to this dispute, at least for cell lines that represent a majority of breast cancer cases,” said the study’s lead author, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics at Georgetown University Medical Center.

... more about:
»Cancer »Comprehensive »Lombardi »Molecular »Treatment

“Researchers -- and by extension, breast cancer patients -- can now have more confidence in these laboratory cell line models, which they use as a basis to understand the disease and design new therapies,” Clarke said.

The research team, which includes scientists from Scotland and Virginia, specifically found that three popular laboratory cultures of estrogen-sensitive breast cancer (which represents about 70 percent of the disease) share a very similar genetic profile to tumors extracted from human breasts.

The finding is important because breast cancer researchers are now using the long-existing laboratory cell lines to tease out the specific genes and proteins that are important to both development and treatment of the disease.

These lines (MCF-7, T47D, ZR-75-1) were created decades ago -- one is more than 30 years old -- from cells collected from the lungs of several unidentified women whose breast cancer had metastasized, Clarke said.

“The breast cancer had started growing in the lungs, and cells from the tumors shed into lung fluid, which was then collected,” Clarke said. These cell lines are “immortal” -- scientists can keep them growing for as long as needed, and the original population has been subdivided countless times.

But researchers have worried that this method of collection carried with it some flawed assumptions, such as the notion that because the cells had come from a tumor that had metastasized, they were also equally capable of spreading.

“We now know that is not accurate,” he said. “Cancer cells may metastasize as clumps, but not all the cells in these clumps are the same.” Separating cancer cells that spread from those that don’t is important in designing the most effective therapies, and in understanding the basic biology of the disease, according to Clarke.

And even if the breast cancer cells collected from lung fluid were capable of metastasizing, “in laboratory culture, they can lose those properties, because there is no selection pressure to retain the ability to spread,” he said. “Cells are stimulated by their environment, and those that grow on plastic won’t fully reflect what is growing in the breast.

“These cell line models can be misused if you expect them to offer biological insights into how breast cancer behaves. That is where it gets controversial,” Clarke said.

In the study, which used a new method to gauge molecular similarities between tumor cells, the scientists compared the three estrogen-receptor positive (ER+) laboratory cell lines with more than a dozen tumor biopsies that were flash frozen just after they were taken from a breast cancer patient.

They compared the cells’ “transcriptome,” the set of messenger RNA molecules being produced or active when the tissue was frozen. “This shows exactly which constellations of genes were in the process of making proteins,” he said. “This is the first time someone has looked at the question in this way, and we found the transcriptomes were not identical, but that they were surprisingly alike.”

They identified a group of 36 genes with an activation profile that was similar between the cell lines and the biopsy samples, and the researchers say that a number of these gene functions have been associated with treatment outcomes.

“The strong correlation we see between the respective transcriptomes clearly imply these laboratory cell lines are good models in which to identify molecular events that are important in some ER positive breast cancers,” Clarke said.

The study was funded in part by the United States Army Medical Research and Materiel Command Breast Cancer Research Program. Clarke’s co-authors include, from the Lombardi Comprehensive Cancer Center: Yuelin Zhu, M.D., Antai Wang, Ph.D., Minetta C. Liu, M.D., Alan Zwart, M.S., Richard Lee, Ph.D., and Ann Gallagher, R.N. Researchers from Virginia Polytechnic Institute and State University (Yue Wang, Ph.D.) and from the University of Edinburgh in Scotland (William R. Miller, Ph.D, J. Michael Dixon, M.D.) also contributed.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area.

Laura Cavender | EurekAlert!
Further information:
http://lombardi.georgetown.edu

Further reports about: Cancer Comprehensive Lombardi Molecular Treatment

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>