Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Key Laboratory Breast Cancer Cell Lines Are, Indeed, Good Models for the "Real" Disease

06.11.2006
In this era of molecular medicine, controversy among cancer researchers is increasing as to whether the laboratory cells they study -- and upon which human treatment is based -- accurately reflect the biology of “real” tumors growing in a person’s body.

Some argue that cancer cells that learn to live in a flat lab dish cannot reflect cancer in the body, but others say that without any other way to study cancer, they seem to have performed well.

Now, researchers at the Lombardi Comprehensive Cancer Center report in the December 2006 (available online November 1) issue of the International Journal of Oncology that the molecular profiles seen in a group of heavily used breast cancer laboratory cell lines significantly resemble those found in human tumors.

“We have provided an answer to this dispute, at least for cell lines that represent a majority of breast cancer cases,” said the study’s lead author, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics at Georgetown University Medical Center.

... more about:
»Cancer »Comprehensive »Lombardi »Molecular »Treatment

“Researchers -- and by extension, breast cancer patients -- can now have more confidence in these laboratory cell line models, which they use as a basis to understand the disease and design new therapies,” Clarke said.

The research team, which includes scientists from Scotland and Virginia, specifically found that three popular laboratory cultures of estrogen-sensitive breast cancer (which represents about 70 percent of the disease) share a very similar genetic profile to tumors extracted from human breasts.

The finding is important because breast cancer researchers are now using the long-existing laboratory cell lines to tease out the specific genes and proteins that are important to both development and treatment of the disease.

These lines (MCF-7, T47D, ZR-75-1) were created decades ago -- one is more than 30 years old -- from cells collected from the lungs of several unidentified women whose breast cancer had metastasized, Clarke said.

“The breast cancer had started growing in the lungs, and cells from the tumors shed into lung fluid, which was then collected,” Clarke said. These cell lines are “immortal” -- scientists can keep them growing for as long as needed, and the original population has been subdivided countless times.

But researchers have worried that this method of collection carried with it some flawed assumptions, such as the notion that because the cells had come from a tumor that had metastasized, they were also equally capable of spreading.

“We now know that is not accurate,” he said. “Cancer cells may metastasize as clumps, but not all the cells in these clumps are the same.” Separating cancer cells that spread from those that don’t is important in designing the most effective therapies, and in understanding the basic biology of the disease, according to Clarke.

And even if the breast cancer cells collected from lung fluid were capable of metastasizing, “in laboratory culture, they can lose those properties, because there is no selection pressure to retain the ability to spread,” he said. “Cells are stimulated by their environment, and those that grow on plastic won’t fully reflect what is growing in the breast.

“These cell line models can be misused if you expect them to offer biological insights into how breast cancer behaves. That is where it gets controversial,” Clarke said.

In the study, which used a new method to gauge molecular similarities between tumor cells, the scientists compared the three estrogen-receptor positive (ER+) laboratory cell lines with more than a dozen tumor biopsies that were flash frozen just after they were taken from a breast cancer patient.

They compared the cells’ “transcriptome,” the set of messenger RNA molecules being produced or active when the tissue was frozen. “This shows exactly which constellations of genes were in the process of making proteins,” he said. “This is the first time someone has looked at the question in this way, and we found the transcriptomes were not identical, but that they were surprisingly alike.”

They identified a group of 36 genes with an activation profile that was similar between the cell lines and the biopsy samples, and the researchers say that a number of these gene functions have been associated with treatment outcomes.

“The strong correlation we see between the respective transcriptomes clearly imply these laboratory cell lines are good models in which to identify molecular events that are important in some ER positive breast cancers,” Clarke said.

The study was funded in part by the United States Army Medical Research and Materiel Command Breast Cancer Research Program. Clarke’s co-authors include, from the Lombardi Comprehensive Cancer Center: Yuelin Zhu, M.D., Antai Wang, Ph.D., Minetta C. Liu, M.D., Alan Zwart, M.S., Richard Lee, Ph.D., and Ann Gallagher, R.N. Researchers from Virginia Polytechnic Institute and State University (Yue Wang, Ph.D.) and from the University of Edinburgh in Scotland (William R. Miller, Ph.D, J. Michael Dixon, M.D.) also contributed.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area.

Laura Cavender | EurekAlert!
Further information:
http://lombardi.georgetown.edu

Further reports about: Cancer Comprehensive Lombardi Molecular Treatment

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>