Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Key Laboratory Breast Cancer Cell Lines Are, Indeed, Good Models for the "Real" Disease

06.11.2006
In this era of molecular medicine, controversy among cancer researchers is increasing as to whether the laboratory cells they study -- and upon which human treatment is based -- accurately reflect the biology of “real” tumors growing in a person’s body.

Some argue that cancer cells that learn to live in a flat lab dish cannot reflect cancer in the body, but others say that without any other way to study cancer, they seem to have performed well.

Now, researchers at the Lombardi Comprehensive Cancer Center report in the December 2006 (available online November 1) issue of the International Journal of Oncology that the molecular profiles seen in a group of heavily used breast cancer laboratory cell lines significantly resemble those found in human tumors.

“We have provided an answer to this dispute, at least for cell lines that represent a majority of breast cancer cases,” said the study’s lead author, Robert Clarke, Ph.D., D.Sc., a Professor of Oncology and Physiology & Biophysics at Georgetown University Medical Center.

... more about:
»Cancer »Comprehensive »Lombardi »Molecular »Treatment

“Researchers -- and by extension, breast cancer patients -- can now have more confidence in these laboratory cell line models, which they use as a basis to understand the disease and design new therapies,” Clarke said.

The research team, which includes scientists from Scotland and Virginia, specifically found that three popular laboratory cultures of estrogen-sensitive breast cancer (which represents about 70 percent of the disease) share a very similar genetic profile to tumors extracted from human breasts.

The finding is important because breast cancer researchers are now using the long-existing laboratory cell lines to tease out the specific genes and proteins that are important to both development and treatment of the disease.

These lines (MCF-7, T47D, ZR-75-1) were created decades ago -- one is more than 30 years old -- from cells collected from the lungs of several unidentified women whose breast cancer had metastasized, Clarke said.

“The breast cancer had started growing in the lungs, and cells from the tumors shed into lung fluid, which was then collected,” Clarke said. These cell lines are “immortal” -- scientists can keep them growing for as long as needed, and the original population has been subdivided countless times.

But researchers have worried that this method of collection carried with it some flawed assumptions, such as the notion that because the cells had come from a tumor that had metastasized, they were also equally capable of spreading.

“We now know that is not accurate,” he said. “Cancer cells may metastasize as clumps, but not all the cells in these clumps are the same.” Separating cancer cells that spread from those that don’t is important in designing the most effective therapies, and in understanding the basic biology of the disease, according to Clarke.

And even if the breast cancer cells collected from lung fluid were capable of metastasizing, “in laboratory culture, they can lose those properties, because there is no selection pressure to retain the ability to spread,” he said. “Cells are stimulated by their environment, and those that grow on plastic won’t fully reflect what is growing in the breast.

“These cell line models can be misused if you expect them to offer biological insights into how breast cancer behaves. That is where it gets controversial,” Clarke said.

In the study, which used a new method to gauge molecular similarities between tumor cells, the scientists compared the three estrogen-receptor positive (ER+) laboratory cell lines with more than a dozen tumor biopsies that were flash frozen just after they were taken from a breast cancer patient.

They compared the cells’ “transcriptome,” the set of messenger RNA molecules being produced or active when the tissue was frozen. “This shows exactly which constellations of genes were in the process of making proteins,” he said. “This is the first time someone has looked at the question in this way, and we found the transcriptomes were not identical, but that they were surprisingly alike.”

They identified a group of 36 genes with an activation profile that was similar between the cell lines and the biopsy samples, and the researchers say that a number of these gene functions have been associated with treatment outcomes.

“The strong correlation we see between the respective transcriptomes clearly imply these laboratory cell lines are good models in which to identify molecular events that are important in some ER positive breast cancers,” Clarke said.

The study was funded in part by the United States Army Medical Research and Materiel Command Breast Cancer Research Program. Clarke’s co-authors include, from the Lombardi Comprehensive Cancer Center: Yuelin Zhu, M.D., Antai Wang, Ph.D., Minetta C. Liu, M.D., Alan Zwart, M.S., Richard Lee, Ph.D., and Ann Gallagher, R.N. Researchers from Virginia Polytechnic Institute and State University (Yue Wang, Ph.D.) and from the University of Edinburgh in Scotland (William R. Miller, Ph.D, J. Michael Dixon, M.D.) also contributed.

About Lombardi Comprehensive Cancer Center

The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area.

Laura Cavender | EurekAlert!
Further information:
http://lombardi.georgetown.edu

Further reports about: Cancer Comprehensive Lombardi Molecular Treatment

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>