Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists make tiny molecular rings with big potential

06.11.2006
Ohio State University chemists have devised a new way to create tiny molecular rings that could one day function as drug delivery devices or antibiotics.

The rings are made from polymers -- large molecules that are made up of many smaller molecules -- and the chemical reaction that creates them is similar to others that create polymer chains. But this new reaction solely makes rings, ones tailored to perform specific functions.

In a recent issue of the Proceedings of the National Academy of Sciences, the chemists report constructing polymer rings of a specific size and binding them to charged sodium atoms -- a first step in a long road that could lead to applications in medicine.

Polymer chains are already often used in drug delivery, pointed out Malcolm Chisholm, Distinguished Professor of Mathematical and Physical Sciences and professor of chemistry at Ohio State. Polymer rings could have similar uses. "These rings could encapsulate certain molecules, transport them somewhere, and release them at a specific time," he said.

... more about:
»Polymer »bubble »chains »reaction

The technique may eventually be used in drug design. The kind of ring molecules grown in this study, known as depsipeptides, are similar to some natural compounds produced by microorganisms that are employed as antibiotics, such as valinomycin. Scientists are also studying depsipeptides as possible anti-cancer agents.

Chisholm hit upon the idea for the new process when he decided to capitalize on what some chemists would call a "bad" reaction.

"A bad chemical reaction is a competing reaction," he said. "So if I'm trying to grow polymer chains, and for some reason a side reaction occurs that chops up my chains, or grows some rings instead, that's a bad reaction. And I thought, if we could control the bad reaction to be selective, to do just one thing for us, then we'd actually have a new kind of process, something that would be completely different from everybody else's."

Chisholm doesn't want to oversell the technology.

"This project is really just beginning, and so there won't be any immediate applications. But there could be potential for future applications in medicine, because these molecules can be varied to perform specific functions," he said.

He described how the ring-making technique works. A catalyst -- an added chemical substance that enables the reaction -- reacts with a single ring-shaped molecule, and multiplies it many times over, spawning rings of many different sizes. He likened the process to a child blowing a cascade of bubbles.

The rings form, break apart, and reform, until the chemists introduce a compound that specifically binds with one size ring in particular, and removes it from the mix. Then all the other rings assume the size and shape of the ring that was removed.

"It's as if all the bubbles in the end collapse to that one particular bubble you were looking for," he said.

While there are other methods for making polymer rings and chains, this is the only one that solely makes rings. It's also the only one for which the catalyst is reusable indefinitely, which Chisholm counts as a significant advantage.

Next, the chemists would like to bind their rings to other charged atoms, such as ions of potassium and lithium.

Ohio State coauthors on the paper included Judith C. Gallucci, a senior research associate, and Hongfeng Yin, a postdoctoral researcher, both in chemistry.

Malcolm Chisholm | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Polymer bubble chains reaction

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>