Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find tumor suppressor gene protects against pre-cancerous development

03.11.2006
Cell biologists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have provided further evidence that a gene thought to play a role in suppressing tumors actually can protect against the development of pre-cancerous cell growth as well.

The researchers say that the gene, caveolin-1 (Cav-1), which they found in two major types of breast cells, could be a potential target for future drugs aimed at preventing breast cancer. The work also suggests a potentially important role of the tumor "microenvironment" in the cancerous process.

Cav-1 is involved in breast cancer onset and progression, and it's present in epithelial cells and mammary "fat pads," or stromal cells. The researchers, led by Michael Lisanti, M.D., Ph.D., professor of cancer biology at Jefferson Medical College of Thomas Jefferson University and Jefferson's Kimmel Cancer Center, showed striking effects in mice that lacked Cav-1, particularly in stromal cells.

Reporting November 1, 2006 in the American Journal of Pathology, Dr. Lisanti, Kimmel Cancer Center director Richard Pestell, M.D., Ph.D., professor and chair of cancer biology at Jefferson Medical College, and their co-workers showed in a series of experiments that tumor cells grew larger in mammary fat pads lacking Cav-1, and that metastatic breast cancer cells transplanted to fat pads with Cav-1 failed to grow.

"There could also be human conditions where loss of Cav-1 in the stroma could be predisposing patients toward increased risk," Dr. Lisanti says. "This provides the hard genetic evidence of a cause-effect relationship between loss of Cav-1 in the stroma and tumor growth. This could be predictive by looking at Cav-1 in the stroma and seeing if this is a bad risk factor."

The researchers found that mice lacking the Cav-1 gene showed a cell thickening in the breast duct and hyperplasia – or excessive cell growth – in the lobulo-alveolar area. Both are locations where breast cancer can begin.

In one study, they took a tumor from a mouse and put it in a stromal fat pad in both a normal mouse and in a mouse lacking Cav-1 and discovered that the tumor grew twice as large in the latter. "The stroma clearly has effects on normal mammary growth, hyperplasia and tumorigenesis," Dr. Lisanti says.

Dr. Lisanti and his team performed another experiment in which they compared the effects of implanting metastatic breast cancer cells in mice with Cav-1 and those lacking the gene. When they implanted such cells in the mouse flank, which is not a location at which tumors grow, nothing happened. But when they put the cells in the mammary fat pad, tumors formed. When they implanted metastatic breast cancer cells with Cav-1 in the fat pads, "it had a huge effect," Dr. Lisanti says, blocking tumor growth.

"This tumor suppressor effect of Cav-1 depends on the location of the cells," he explains. "This means it is specific to the mammary fat pad. The mammary stromal and epithelial cells somehow sense the microenvironment and respond to the Cav-1 gene."

The researchers believe that the effect also depends on the activity of the cyclin D1 gene, a cancer-causing gene overexpressed in about half of all breast cancers. Using a mouse model of premalignant growth in mice carrying the cyclin D1 gene but lacking Cav-1 – which worsens the condition – the researchers added Cav-1 and found "it completely represses the phenotype, meaning it can not only suppress the tumor, but also the premalignant state caused by cyclinD1 upregulation."

Turning down cyclinD1 activity relies on the cellular microenvironment, Dr. Lisanti says. "We think Cav-1 can block the transforming effects of cyclinD1," he says. "It could be a very important therapeutic candidate for developing caveolin mimetic drugs suppressing cyclinD1 activity."

Dr. Lisanti believes that Cav-1 "could be important for early intervention because patients with epithelial cell hyperplasia could be given Cav-1 mimetic drugs to see if they could suppress this."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Cav-1 HDL-cholesterol Lisanti breast cyclinD1 mammary stroma stromal

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>