Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers determine why wolves not dispersing as fast as expected in Yellowstone

In 1995, 14 wolves were transferred to Yellowstone National Park in the U.S. from the Canadian Rocky Mountains, with 17 more joining them the following year. More than 1,000 healthy wolves have descended from the original 31, with about 150 of them still residing in the park boundaries.

However, wolves have been known to disperse at a rate of 100 km a year, but the Yellowstone wolves have only spread at one-tenth that rate. The slow dispersal rate had stumped researchers across North America until a team of mathematical biologists at the University of Alberta recently solved the puzzle.

"When the wolves traveled far distances in their new environment it was easy for them to lose track of their mates, and the further they traveled the less likely it is for them to find a mate," said Dr. Mark Lewis, director of the U of A Centre for Mathematical Biology and a co-author of the study.

"We've shown that a reduced probability of finding mates at low densities slows the predicted rate of recolonization," added Amy Hurford, a former U of A biological sciences master's student and co-author of the study.

... more about:
»Lewis »Wolves »Yellowstone

By the 1970s, wolves had been systematically hunted to extinction in the lower 48 states in order to protect livestock. But wolves were a keystone species in the area (i.e. they are predators and nobody preys upon them), and, after 30 years of extinction, researchers felt a reintroduction of the species would balance the burgeoning population of other animals in the area, such as elk and cougars.

The wolves have been doing well in their new environment, and researchers had considered the wolves' slow dispersal to be more puzzling than problematic, which is good news, because Lewis believes the the slower-than-expected recolonization rate will continue.

"As long as they are dispersing into unchartered territory, we expect the population to continue spreading at the slow rate--about 10 km per year," said Lewis, the Canada Research Chair in Mathematical Biology.

The U of A researchers used radio tracking of wolves and computer simulation models to reach their conclusions. The research was published recently in the journal Theoretical Population Biology.

"Who would have thought that you could use mathematical equations to understand the behavior of wolves," Lewis said. "But that's what you can do in the field of mathematical biology. It's a newer field, but it's expanding rapidly."

Ryan Smith | EurekAlert!
Further information:

Further reports about: Lewis Wolves Yellowstone

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>