Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of a key gene required for brain neural circuit formation

03.11.2006
An international team of scientists, lead by Dr. Frederic Charron at the IRCM, and Drs Ami Okada, Sue McConnell, and Marc Tessier-Lavigne in the USA, have made a discovery which could help treat spinal cord injuries and neurodegenerative diseases. This new finding will be published in the next issue of the prestigious scientific journal Nature.

The brain is composed of billions of neurons that must connect their axons with an appropriate set of targets to form the neuronal circuits that underlie its function. Developing axons are guided to their targets by attractive and repulsive guidance molecules. Inappropriate wiring or damage of these neuronal connections leads to severe abnormalities of the nervous system.

Three years ago, while he was a postdoctoral fellow in the laboratory of Dr. Marc Tessier-Lavigne, Dr. Charron discovered that Sonic Hedgehog (Shh) is an axonal attractant for brain and spinal cord neurons. However, the mechanism by which Shh elicited this effect remained unknown. The recent work of Dr. Charron, performed in close collaboration with Dr. Ami Okada and the teams of Drs. Sue McConnell and Marc Tessier-Lavigne, at Stanford University and Genentech, respectively, showed that Shh exerts its attractive effect through a novel receptor named Boc. Remarkably, this novel Shh receptor is absolutely required for the axon guidance role of Shh and the role of Shh in brain neural circuit formation.

"The findings of Dr. Charron and his team are of great relevance in developmental neurobiology and our understanding of normal brain development. This research could eventually have an impact on our understanding of neurodevelopmental disorders," says Dr. Rémi Quirion based in Montréal and Scientific Director of the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction. "No matter how specialized research findings may be, the knowledge we gain from them, holds the key to improved health and quality of life for Canadians and people throughout the world afflicted by neurodevelopmental disorders," adds Dr. Quirion.

... more about:
»Axon »Charron »Shh »neural »spinal

In addition to helping us understand the immense complexity underlying the wiring of the nervous system, the Dr. Charron's research will also help to identify novel strategies to promote the proper guidance and wiring into neural circuits of axons damaged by neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, or by brain and spinal cord injuries.

This work will be published only a year after Dr. Charron established his laboratory at the Institut de recherches cliniques de Montréal (IRCM).

"Dr. Charron is one of the country's leading newly arrived neuroscientists. This research has important long-term implications for the repair of spinal cord injury: if we knew all of the molecules required to guide axons correctly during spinal cord healing, we'd know how to heal spinal cord injuries " says Dr. Rod McInnes, Scientific Director of the Canadian Institutes of Health Research Institute of Genetics. "This is beautiful research that adds another major brick to our building a complete understanding of how the spinal cord is made, and how injury of it can be treated."

Lucette Thériault | EurekAlert!
Further information:
http://www.ircm.qc.ca

Further reports about: Axon Charron Shh neural spinal

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>