Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech research shows cocaine changes proteins and brain function

01.11.2006
In the first large-scale analysis of proteins in the brains of individuals addicted to cocaine, researchers have uncovered novel proteins and mechanisms that may one day lead to new treatment options to fight addiction.

The results, reported in the current issue of Molecular Psychiatry, released on-line today, show differences in the amounts of 50 proteins and point to profound changes in brain function related to long-term cocaine use, said Scott E. Hemby, Ph.D., of Wake Forest University of Medicine.

The researcher used technology so advanced it was like looking for differences in brain tissue with "floodlights" rather than a "flashlight," he said. Hemby and his colleagues analyzed thousands of proteins from brain tissue obtained from individuals who died of cocaine overdose and compared these "protein profiles" with individuals who died of non-drug related causes.

"The findings provide new insights into the long-term effects and damage that cocaine has on the human brain and will help guide future animal studies to further delineate the biochemical changes that comprise the addicted brain," said Hemby, associate professor of physiology and pharmacology.

... more about:
»Brain »Hemby »cocaine

The researchers compared the proteome (the entire complement of proteins expressed at a given time) between the two groups by separating all of the proteins and then using high-throughput mass spectrometry which allowed the accurate identifcation of thousands of proteins simultaneously, Hemby said.

The unbiased nature of the technology enables the determination of novel proteins and pathway involved in disease. Using post-mortem brain tissue samples from the Brain Endowment Bank at the University of Miami, the investigators analyzed protein expression in the nucleus accumbens, a part of the brain involved in the addictive effects of drugs, in 10 cocaine-overdose victims and 10 drug-free individuals.

Analysis of thousands of proteins revealed differences between the two groups in the amounts of approximately 50 proteins, most of which correspond to changes in the ability of the brain cells to strenghten their connections and communicate with one another.

Understanding the coordinated involvement of multiple proteins in cocaine abuse provides insight into the molecular basis of the disease and offers new targets for pharmaco-therapeutic intervention for drug-abuse-related disorders, he said.

"These studies are an important and significant step to further our understanding of the vast and long-term consequences of cocaine use and may provide insights into novel targets for medication development," Hemby said.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Brain Hemby cocaine

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>