Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover two-component lantibiotic with therapeutic potential

01.11.2006
The discovery and preparation of a naturally occurring antibiotic could open the door to new therapeutic drugs for treating nasty infections.

The rapid spread of drug-resistant bacterial strains poses a persistent threat to human health, and requires new sources of antibiotics to treat infections. Researchers at the University of Illinois at Urbana-Champaign are tackling this problem by discovering and preparing natural antibiotics called lantibiotics.

Lantibiotics are a class of very potent antimicrobial compounds whose antimicrobial properties are attributed to their structure. They possess unusual sulfur bridged rings that provide structural rigidity for binding their cellular targets. Lantibiotics are commonly used in the food industry to inhibit the growth of microorganisms.

"Having the ability to make analogs of these naturally occurring antibiotics gives us the flexibility to look for improvements in properties such as toxicity, biostability and bioavailability," said Wilfred van der Donk, a William H. and Janet Lycan Professor of Chemistry at the U. of I. He is a corresponding author of a paper that will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences. In previous work, van der Donk first identified the molecular activity of an enzyme (LctM) responsible for naturally turning a small protein into a lantibiotic. That discovery, reported in the journal Science in 2004, involved lacticin 481, a lantibiotic produced by several strains of Lactococcus lactis, a bacterium used in cheese production.

In March 2006, van der Donk's team reported, again in Science, the synthesis of the lantibiotic nisin. The most studied lantibiotic, nisin has been used as a food preservative for more than 40 years without the development of significant antibiotic resistance.

Then, in the Oct. 26 issue of Chemistry and Biology, the team demonstrated that LctM could accept substrates vastly different from its natural substrate, in vitro.

"Normally, enzymes are very selective, and will work only on their natural substrate," said van der Donk, who is also an affiliate of the university's Institute for Genomic Biology. "We showed that our enzyme could modify many synthetic substrates, and produce sulfur bridged rings of different sizes and shapes. This offered us the opportunity to control and alter the structure of lantibiotics."

In their latest work, to be published in PNAS, van der Donk and his collaborators describe a new two-component lantibiotic. These lantibiotic systems utilize two peptides that are each post-translationally modified to an active form, and act in synergy to provide antibacterial activity.

"Given the synergy observed among two-component lantibiotics, which display similar or higher activity than the best single-component lantibiotic, nisin, the possibility of engineering new lantibiotics with therapeutic potential is even greater for these systems," van der Donk said.

Using bioinformatics, the researchers found genes annotated in the fully sequenced genome of the Gram-positive bacterium Bacillus halodurans C-125 as precursors of the lantibiotics mersacidin and cytolysin. This strain had not previously been reported to produce a lantibiotic.

The new two-component lantibiotic was named haloduracin by its discoverers. "The bacterium that produces haloduracin grows at pH 9 and above, suggesting that the lantibiotic it produces will be stable in the human body, unlike nisin, which is unstable at pH 7 and above," van der Donk said. Significantly, the researchers succeeded in expressing in the bacterium Escherichia coli the machinery to produce haloduracin, thereby creating the first in vitro biosynthesis of a two-component lantibiotic.

"The in vitro biosynthesis opens the door to new, intriguing possibilities involving antimicrobial peptide design and engineering," van der Donk said. "Now we can start applying all the lessons we learned with lacticin 481."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Donk antibiotic bacterium lantibiotic nisin therapeutic two-component

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>