Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial 'switch gene' regulates how oceans emit sulfur into atmosphere

30.10.2006
Research reveals previously hidden role marine microbes play

Scientists have discovered a bacterial "switch gene" in two groups of microscopic plankton common in the oceans. The gene helps determine whether certain marine plankton convert a sulfur compound to one that rises into the atmosphere, where it can affect the earth's temperature, or remain in the sea, where it can be used as a nutrient.

"This new gene offers a powerful tool to study the question of how these plankton are involved with sulfur exchange between the ocean and atmosphere," said Mary Ann Moran, marine microbial ecologist at the University of Georgia. Moran and her colleagues published their findings in the Oct. 26, 2006, issue of the journal Science.

Much of the sulfur in the atmosphere comes from the surface of oceans, from a compound called dimethlysulfide, or DMS. Marine plankton control how much sulfur rises into the atmosphere by converting a compound called DMSP, or dimethylsulfoniopropionate, to DMS or to sulfur compounds that are not climatically active. Moran and her team discovered a gene that controls whether or not these sea drifters create DMS that rises into the air.

... more about:
»DMS »DMSP »Marine »Plankton »Sulfur »atmosphere

"Isolating and discovering a novel, keystone bacterium from the ocean first, and then sequencing its genome enabled this team to find the genes involved in the DMSP cycle," said Matthew Kane, program director in the National Science Foundation (NSF) Division of Molecular and Cellular Biosciences, which supported the research. "The research has revealed the previously hidden role that marine microbes play in the global sulfur cycle."

The researchers discovered that microscopic plankton that fall under the Roseobacter and SAR11 organism groups are the primary plankton involved in directing DMSP away from forming DMS, and thus making sulfur unavailable to atmospheric processes.

Dramatic advances in understanding how these plankton work have developed in the past few years with the availability of new genomic data. The scientists searched genome fragments of these plankton, looking for specific gene sequences that would show how the plankton use sulfur compounds.

"This breakthrough in the microbial physiology of DMSP metabolism opens the door to understanding the biology and ecology of this globally important process," said William Whitman, a microbiologist at the University of Georgia and co-author of the Science paper. The discovery of a bacterial gene switch in these two groups of plankton will open new areas of research, since DMSP synthesis may account for almost all marine-created atmospheric sulfur. The findings also expand knowledge of how these marine organisms are involved in the routing of carbon and sulfur into the microbial food web.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: DMS DMSP Marine Plankton Sulfur atmosphere

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>