Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right mix: A biomaterial blend library

30.10.2006
From dental implants to hip replacements, biomaterials have become big business. But scientists pursuing this modern medical revolution share a basic challenge: biocompatibility.

How will a biomaterial on the lab bench actually work inside the human body? Will a patient accept the new material or suffer an inflammatory response? And can that material survive in a human's complex system?

To tackle such questions, researchers at the National Institute of Standards and Technology (NIST) and the New Jersey Center for Biomaterials (NJCB) at Rutgers University have developed new methods to analyze the interactions between cells and biomaterials. Their work could lead to inexpensive techniques for building better biomaterials.

Polymers derived from the amino acid tyrosine make up a broad class of degradable biomaterials under investigation. Such materials provide a temporary scaffold for cells to grow and tissue to regenerate. In a 2006 study* presented at the national meeting of the American Chemical Society in September, the researchers analyzed how two types of model cells--immune cells known as macrophages and bone cells known as osteoblasts--responded to changes in the composition of thin films made of these tyrosine-derived polymers. In practice, many biomaterials are made from blends of polymers to achieve specific material properties. Optimizing the blend composition is often a difficult and time-consuming task. As the blends gained a higher or lower proportion of a respective material, the cells around them react by changing shape, ultimately increasing or decreasing contact with the films. In the body, such cell-material dynamics are critically important to the outcome--determining whether a biomaterial leads to inflammation or abnormal cell growth, for example.

... more about:
»Biomaterial »Polymer »blend »scaffold

The new study represents an innovative line of research. Working with NJCB, NIST scientists have developed a method for constructing "scaffold libraries" --collections of biomaterial scaffolds made from controlled polymer blend compositions. The library currently contains scaffolds made from blends of poly(DTE carbonate) and poly(DTO carbonate). Ultimately, Becker says, the goal is to develop rapid, inexpensive methods to predict the behavior in the body of any of thousands of possible tyrosine-derived blends.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Biomaterial Polymer blend scaffold

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>