Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right mix: A biomaterial blend library

30.10.2006
From dental implants to hip replacements, biomaterials have become big business. But scientists pursuing this modern medical revolution share a basic challenge: biocompatibility.

How will a biomaterial on the lab bench actually work inside the human body? Will a patient accept the new material or suffer an inflammatory response? And can that material survive in a human's complex system?

To tackle such questions, researchers at the National Institute of Standards and Technology (NIST) and the New Jersey Center for Biomaterials (NJCB) at Rutgers University have developed new methods to analyze the interactions between cells and biomaterials. Their work could lead to inexpensive techniques for building better biomaterials.

Polymers derived from the amino acid tyrosine make up a broad class of degradable biomaterials under investigation. Such materials provide a temporary scaffold for cells to grow and tissue to regenerate. In a 2006 study* presented at the national meeting of the American Chemical Society in September, the researchers analyzed how two types of model cells--immune cells known as macrophages and bone cells known as osteoblasts--responded to changes in the composition of thin films made of these tyrosine-derived polymers. In practice, many biomaterials are made from blends of polymers to achieve specific material properties. Optimizing the blend composition is often a difficult and time-consuming task. As the blends gained a higher or lower proportion of a respective material, the cells around them react by changing shape, ultimately increasing or decreasing contact with the films. In the body, such cell-material dynamics are critically important to the outcome--determining whether a biomaterial leads to inflammation or abnormal cell growth, for example.

... more about:
»Biomaterial »Polymer »blend »scaffold

The new study represents an innovative line of research. Working with NJCB, NIST scientists have developed a method for constructing "scaffold libraries" --collections of biomaterial scaffolds made from controlled polymer blend compositions. The library currently contains scaffolds made from blends of poly(DTE carbonate) and poly(DTO carbonate). Ultimately, Becker says, the goal is to develop rapid, inexpensive methods to predict the behavior in the body of any of thousands of possible tyrosine-derived blends.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Biomaterial Polymer blend scaffold

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>